3 resultados para Mercado financeiro - Previsão
em Universidade Federal do Pará
Resumo:
A relação de crédito, comercialização em espécie e controle do trabalho por endividamento, tida como característica específica da região amazônica, teve similares pelo mundo relacionados a diversas formas de produção: extrativismo vegetal, agricultura familiar, artesanato e mesmo plantations de seringueiras no Sudeste asiático. O monopólio comercial por falta de acesso ao mercado e usual ausência de moedas garante ao comerciante o poder de arbitragem sobre a equivalência de trocas, endividando o produtor que lhe toma adiantado mantimentos e instrumentos em troca da produção futura. A ampliação das relações de financiamento capitalistas com a expansão do sistema bancário em meados do século XX pretendeu desestruturar o sistema de aviamento substituindo o tradicional crédito em espécie, monetarizando a economia, multiplicando o número de comerciantes concorrentes e rompendo o monopólio dos aviadores no sertão. A persistência atual desta relação na Amazônia é explicada por se concretizar como alternativa de integração ao mercado financeiro e de produtos capitalista em uma realidade caracterizada historicamente por unidades de produção dispersas, com precária estrutura de escoamento e comunicação.
Resumo:
No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.
Resumo:
A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.