5 resultados para Linear Multi-step Formulae
em Universidade Federal do Pará
Resumo:
A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.
Resumo:
Nesta dissertação é apresentado o desenvolvimento de algoritmos para aplicação do método Bridge-Weigh In Motion (B-WIM) para a pesagem em movimento de trens e para a caracterização do tráfego ferroviário, permitindo-se obter informações sobre a velocidade de passagem dos trens, número e espaçamento entre eixos. Os sistemas B-WIM a partir de uma simples instrumentação permitem determinar as cargas por eixo de veículos em movimento, eliminando o efeito dinâmico. Foram implementados os algoritmos para a determinação dos valores referentes a geometria do trem e das cargas, que foi validado a partir de um exemplo teórico, onde se simulou a passagem de um trem de características conhecidas sobre a ponte e as cargas por eixos foram determinadas com 100% de exatidão. Além disso, foi feito um exemplo numérico em elementos finitos, de um viaduto em concreto armado para aplicação do método, onde foi feita a determinação das cargas por eixo para diferentes velocidades de passagem do trem. A fim de reduzir o tempo de processamento nas análises do exemplo numérico, foi desenvolvido um algoritmo para a geração de cargas nodais no modelo numérico que reduziram o tempo de processamento em até 96% quando comparado com a análise de múltiplos passos (“Multi-Step”), que simula automaticamente a passagem do trem sobre a estrutura. Finalmente, o método foi testado em um caso real a partir de monitorações realizadas em um viaduto de concreto armado da Estrada de Ferro Carajás. Apesar de não ter sido possível a determinação das cargas por eixo da locomotiva, foi possível medir precisamente o peso bruto total da locomotiva quando se utilizou o modelo constitutivo de Collins & Mitchell (1991) para o concreto.
Resumo:
A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.
Resumo:
O método de empilhamento sísmico CRS simula seções sísmicas ZO a partir de dados de cobertura múltipla, independente do macro-modelo de velocidades. Para meios 2-D, a função tempo de trânsito de empilhamento depende de três parâmetros, a saber: do ângulo de emergência do raio de reflexão normal (em relação à normal da superfície) e das curvaturas das frentes de onda relacionadas às ondas hipotéticas, denominadas NIP e Normal. O empilhamento CRS consiste na soma das amplitudes dos traços sísmicos em dados de múltipla cobertura, ao longo da superfície definida pela função tempo de trânsito do empilhamento CRS, que melhor se ajusta aos dados. O resultado do empilhamento CRS é assinalado a pontos de uma malha pré-definida na seção ZO. Como resultado tem-se a simulação de uma seção sísmica ZO. Isto significa que para cada ponto da seção ZO deve-se estimar o trio de parâmetros ótimos que produz a máxima coerência entre os eventos de reflexão sísmica. Nesta Tese apresenta-se fórmulas para o método CRS 2-D e para a velocidade NMO, que consideram a topografia da superfície de medição. O algoritmo é baseado na estratégia de otimização dos parâmetros de fórmula CRS através de um processo em três etapas: 1) Busca dos parâmetros, o ângulo de emergência e a curvatura da onda NIP, aplicando uma otimização global, 2) busca de um parâmetro, a curvatura da onda N, aplicando uma otimização global, e 3) busca de três parâmetros aplicando uma otimização local para refinar os parâmetros estimados nas etapas anteriores. Na primeira e segunda etapas é usado o algoritmo Simulated Annealing (SA) e na terceira etapa é usado o algoritmo Variable Metric (VM). Para o caso de uma superfície de medição com variações topográficas suaves, foi considerada a curvatura desta superfície no algoritmo do método de empilhamento CRS 2-D, com aplicação a dados sintéticos. O resultado foi uma seção ZO simulada, de alta qualidade ao ser comparada com a seção ZO obtida por modelamento direto, com uma alta razão sinal-ruído, além da estimativa do trio de parâmetros da função tempo de trânsito. Foi realizada uma nálise de sensibilidade para a nova função de tempo de trânsito CRS em relação à curvatura da superfície de medição. Os resultados demonstraram que a função tempo de trânsito CRS é mais sensível nos pontos-médios afastados do ponto central e para grandes afastamentos. As expressões da velocidade NMO apresentadas foram aplicadas para estimar as velocidades e as profundidades dos refletores para um modelo 2-D com topografia suave. Para a inversão destas velocidades e profundidades dos refletores, foi considerado o algoritmo de inversão tipo Dix. A velocidade NMO para uma superfície de medição curva, permite estimar muito melhor estas velocidades e profundidades dos refletores, que as velocidades NMO referidas as superfícies planas. Também apresenta-se uma abordagem do empilhamento CRS no caso 3-D. neste caso a função tempo de trânsito depende de oito parâmetros. São abordadas cinco estratégias de busca destes parâmetros. A combinação de duas destas estratégias (estratégias das três aproximações dos tempos de trânsito e a estratégia das configurações e curvaturas arbitrárias) foi aplicada exitosamente no empilhamento CRS 3-D de dados sintéticos e reais.
Resumo:
Neste trabalho é apresentada uma análise do esquema de inversão linear para a estimativa de anisotropia na vizinhança de um receptor situado em um poço a partir de da componente vertical do vetor de vagarosidade e do vetor de polarização de ondas P medidops em experimentos de VSP walkaway multiazimutal. Independente do meio acima do geofone (homogêneo ou heterogêneo) e da forma do poço (pode ser direcional ou curvado, vertical e inclinado), a inversão é feita a partir de uma aproximação de primeira ordem em torno de um meio isotrópico de referência. O esquma da inversão é analisado considerando fatores como: o nível de ruído nos dados, o tipo de onda P, o grau de anisotropia do meio, a escolha dos parâmetros no meio isotrópico de referência e grau de heterogeneidade do meio. Os resultados são apresentados.