3 resultados para Laminar-flow

em Universidade Federal do Pará


Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: The Generalized Integral Transform Technique (GITT) is applied to the solution of the momentum equations in a hydrodynamically developing laminar flow of a non-Newtonian power-law fluid inside a circular duct. A primitive variables formulation is adopted in order to avoid the singularity of the auxiliary eigenvalue problem in terms of Bessel functions at the centerline of the duct when the GITT approach is applied. Results for the velocity field and friction factor-Reynolds number product are computed for different power-law indices, which are tabulated and graphically presented as functions of the dimensionless coordinates. Critical comparisons with previous results in the literature are also performed, in order to validate the numerical codes developed in the present work and to demonstrate the consistency of the final results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb α, IIIb ß and IIIc). Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Related momentum and energy equations describing the heat and fluid flow of Herschel-Bulkley fluids within concentric annular ducts are analytically solved using the classical integral transform technique, which permits accurate determination of parameters of practical interest in engineering such as friction factors and Nusselt numbers for the duct length. In analyzing the problem, thermally developing flow is assumed and the duct walls are subjected to boundary conditions of first kind. Results are computed for the velocity and temperature fields as well as for the parameters cited above with different power-law indices, yield numbers and aspect ratios. Comparisons are also made with previous work available in the literature, providing direct validation of the results and showing that they are consistent.