2 resultados para LEONTOPITHECUS-ROSALIA

em Universidade Federal do Pará


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PrPC prion protein contains 250 amino acids with some variation among species and is expressed in several cell types. PrPC is converted to PrPSc by a post-translational process in which it acquires amino acid sequences of three-dimensional conformation of -sheets. Variations in the prion protein gene were observed among 16 genera of New World primates (Platyrrhini), and resulted in amino acid substitutions when compared with the human sequence. Seven substitutions not yet described in the literature were found: W  R at position 31 in Cebuella, T  A at position 95 in Cacajao and Chiropotes, N S at position 100 in Brachyteles, L  Q at position 130 in Leontopithecus (in the sequence responsible for generating the -sheet 1), D  E at position 144 in Lagothrix (in the sequence responsible for the -helix 1), D G at position 147 in Saguinus (also located in the -helix 1 region), and M  I at position 232 in Alouatta. The phylogenetic trees generated by parsimony, neighbor-joining and Bayesian analyses strongly support the monophyletic status of the platyrrhines, but did not resolve relationships among families. However, the results do corroborate previous findings, which indicate that the three platyrrhine families radiated rapidly from an ancient split.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the coding region of the H gene was sequenced and analyzed in fourteen genera of New World primates (Alouatta, Aotus, Ateles, Brachyteles, Cacajao, Callicebus, Callithrix, Cebus, Chiropotes, Lagothrix, Leontopithecus, Pithecia, Saguinus, and Saimiri), in order to investigate the evolution of the gene. The analyses revealed that this coding region contains 1,101 nucleotides, with the exception of Brachyteles, the callitrichines (Callithrix, Leontopithecus, and Saguinus) and one species of Callicebus (moloch), in which one codon was deleted. In the primates studied, the high GC content (63%), the nonrandom distribution of codons and the low evolution rate of the gene (0.513 substitutions/site/MA in the order Primates) suggest the action of a purifying type of selective pressure, confirmed by the Z-test. Our analyses did not identify mutations equivalent to those responsible for the H-deficient phenotypes found in humans, nor any other alteration that might explain the lack of expression of the gene in the erythrocytes of Neotropical monkeys. The phylogenetic trees obtained for the H gene and the distance matrix data suggest the occurrence of divergent evolution in the primates.