2 resultados para Isometric Axial Rotation
em Universidade Federal do Pará
Resumo:
Este trabalho apresenta uma bancada para testes em geradores elétricos, utilizados em aerogeradores de pequeno porte. O sistema é composto basicamente por um motor de indução trifásico, que simula um rotor eólico, acoplado mecanicamente ao gerador elétrico submetido ao ensaio; um inversor de frequência, usado para variação da velocidade do motor; transdutores de grandezas elétricas, que efetuam a medição dos parâmetros de interesse (tensões e correntes instantâneas) na saída do gerador; um sensor de velocidade angular, para medição da rotação que é fornecida ao eixo do motor; um microcomputador, para monitoração e armazenamento dos parâmetros medidos, e controle do inversor de frequência, por meio de um programa computacional desenvolvido; e uma placa de aquisição de dados, que serve como interface entre os transdutores/sensores e o microcomputador. A velocidade angular fornecida ao gerador em ensaio pode ser variada conforme valores fornecidos de velocidades de vento, as quais são associadas a valores correspondentes de rotação, a fim de simular o comportamento de um rotor eólico. Dessa forma, é possível traçar a curva de potência (potência versus velocidade de vento) do gerador ensaiado e analisar seu desempenho. Apresenta-se também neste trabalho os resultados de medições realizadas na bancada, referentes aos ensaios de um gerador comercial de pequena potência (1 kW) e de outro desenvolvido em projeto de pesquisa, ambos do tipo de imã permanente com fluxo axial.
Resumo:
It has been shown that mental rotation of objects and human body parts is processed differently in the human brain. But what about body parts belonging to other primates? Does our brain process this information like any other object or does it instead maximize the structural similarities with our homologous body parts? We tried to answer this question by measuring the manual reaction time (MRT) of human participants discriminating the handedness of drawings representing the hands of four anthropoid primates (orangutan, chimpanzee, gorilla, and human). Twenty-four right-handed volunteers (13 males and 11 females) were instructed to judge the handedness of a hand drawing in palm view by pressing a left/right key. The orientation of hand drawings varied from 0º (fingers upwards) to 90º lateral (fingers pointing away from the midline), 180º (fingers downwards) and 90º medial (finger towards the midline). The results showed an effect of rotation angle (F(3, 69) = 19.57, P < 0.001), but not of hand identity, on MRTs. Moreover, for all hand drawings, a medial rotation elicited shorter MRTs than a lateral rotation (960 and 1169 ms, respectively, P < 0.05). This result has been previously observed for drawings of the human hand and related to biomechanical constraints of movement performance. Our findings indicate that anthropoid hands are essentially equivalent stimuli for handedness recognition. Since the task involves mentally simulating the posture and rotation of the hands, we wondered if "mirror neurons" could be involved in establishing the motor equivalence between the stimuli and the participants' own hands.