2 resultados para Intracardiac Neurons
em Universidade Federal do Pará
Resumo:
A exposição a compostos mercuriais resulta em danos oxidativos, afetando gravemente o sistema nervoso central, como observado em humanos e em modelos experimentais. Este trabalho utilizou ratos Wistar em diferentes períodos do neuro-desenvolvimento a fim de investigar possíveis efeitos protetores do selênio (selenito de sódio) em um modelo in vivo de exposição ao metilmercúrio (MeHg). Os sujeitos (grupos de idades P1 e P21) receberam por amamentação ou via oral: veículo, Selênio (5ppm), MeHg (10ppm) ou Selênio (5ppm) mais MeHg (10ppm) durante 20 e 10 dias respectivamente (n = 8 por grupo). Após o tratamento, os ratos foram submetidos aos testes de campo aberto e labirinto aquático a fim de analisar déficits motores e de memória/aprendizagem, respectivamente. Para fins de análise histológica, foi realizada perfusão e imunohistoquimica para Neu-N. Com o objetivo de aferir possíveis efeitos deletérios sobre populações neuronais, foi feita contagem estereológica dos neurônios do hipocampo (camada polimórfica do giro denteado). Como resultado, foi observada redução significativa na atividade locomotora de neonatos (P1) mediante exposição ao MeHg. Além disso, nos grupos expostos ao MeHg (isoladamente ou associado ao selênio) verificou-se déficits de aprendizagem e memória. Já os animais P21 expostos ao MeHg apresentaram aumento na atividade locomotora, efeito abolido pela administração concomitante de selênio. Quando submetidos ao labirinto aquático, observou-se redução do tempo de latência apenas no grupo controle e naqueles animais expostos ao selênio. Como resultado das contagens estereológicas, observou-se diminuição do número de neurônios no hipocampo somente nos animais P21 expostos ao mercúrio. Os resultados obtidos sob estas condições experimentais mostraram que a exposição ao MeHg resultou em efeitos comportamentais diversos dependentes da idade dos sujeitos. A administração de selênio só foi capaz de interferir positivamente nos déficits locomotores observados em animais mais velhos. Além disso, foi observado que a administração de selênio não interferiu nos distúrbios comportamentais de memória/aprendizagem, tampouco na morte neuronal induzida por MeHg. Possíveis mecanismos associados a este padrão de proteção parcial por selênio, especialmente em estágios mais avançados de desenvolvimento neural ainda necessitam ser elucidados.
Resumo:
The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.