3 resultados para Integral work
em Universidade Federal do Pará
Resumo:
ABSTRACT: The Generalized Integral Transform Technique (GITT) is applied to the solution of the momentum equations in a hydrodynamically developing laminar flow of a non-Newtonian power-law fluid inside a circular duct. A primitive variables formulation is adopted in order to avoid the singularity of the auxiliary eigenvalue problem in terms of Bessel functions at the centerline of the duct when the GITT approach is applied. Results for the velocity field and friction factor-Reynolds number product are computed for different power-law indices, which are tabulated and graphically presented as functions of the dimensionless coordinates. Critical comparisons with previous results in the literature are also performed, in order to validate the numerical codes developed in the present work and to demonstrate the consistency of the final results.
Resumo:
ABSTRACT: Related momentum and energy equations describing the heat and fluid flow of Herschel-Bulkley fluids within concentric annular ducts are analytically solved using the classical integral transform technique, which permits accurate determination of parameters of practical interest in engineering such as friction factors and Nusselt numbers for the duct length. In analyzing the problem, thermally developing flow is assumed and the duct walls are subjected to boundary conditions of first kind. Results are computed for the velocity and temperature fields as well as for the parameters cited above with different power-law indices, yield numbers and aspect ratios. Comparisons are also made with previous work available in the literature, providing direct validation of the results and showing that they are consistent.
Resumo:
Os métodos numéricos de Elementos Finitos e Equação Integral são comumente utilizados para investigações eletromagnéticas na Geofísica, e, para essas modelagens é importante saber qual algoritmo é mais rápido num certo modelo geofísico. Neste trabalho são feitas comparações nos resultados de tempo computacional desses dois métodos em modelos bidimensionais com heterogeneidades condutivas num semiespaço resistivo energizados por uma linha infinita de corrente (com 1000Hz de freqüência) e situada na superfície paralelamente ao "strike" das heterogeneidades. Após a validação e otimização dos programas analisamos o comportamento dos tempos de processamento nos modelos de corpos retangulares variandose o tamanho, o número e a inclinação dos corpos. Além disso, investigamos nesses métodos as etapas que demandam maior custo computacional. Em nossos modelos, o método de Elementos Finitos foi mais vantajoso que o de Equação Integral, com exceção na situação de corpos com baixa condutividade ou com geometria inclinada.