3 resultados para Induced Oxidative Stress
em Universidade Federal do Pará
Resumo:
Background: Several studies have evaluated the oxidant and antioxidant status of thalassemia patients but most focused mainly on the severe and intermediate states of the disease. Moreover, the oxidative status has not been evaluated for the different beta-thalassemia mutations. Objective: To evaluate lipid peroxidation and Trolox equivalent antioxidant capacity in relation to serum iron and ferritin in beta thalassemia resulting from two different mutations (CD39 and IVS-I-110) compared to individuals without beta-thalassemia. Methods: One hundred and thirty subjects were studied, including 49 who were heterozygous for beta-thalassemia and 81 controls. Blood samples were subjected to screening tests for hemoglobin. Allele-specific polymerase chain reaction was used to confirm mutations for beta-thalassemia, an analysis of thiobarbituric acid reactive species was used to determine lipid peroxidation, and Trolox equivalent antioxidant capacity evaluations were performed. The heterozygous beta-thalassemia group was also evaluated for serum iron and ferritin status. Results: Thiobarbituric acid reactive species (486.24 ± 119.64 ng/mL) and Trolox equivalent antioxidant capacity values (2.23 ± 0.11 mM/L) were higher in beta-thalassemia heterozygotes compared to controls (260.86 ± 92.40 ng/mL and 2.12 ± 0.10 mM/L, respectively; p-value < 0.01). Increased thiobarbituric acid reactive species values were observed in subjects with the CD39 mutation compared with those with the IVS-I-110 mutation (529.94 ± 115.60 ng/mL and 453.39 ± 121.10 ng/mL, respectively; p-value = 0.04). However, average Trolox equivalent antioxidant capacity values were similar for both mutations (2.20 ± 0.08 mM/L and 2.23 ± 0.12 mM/L, respectively; p-value = 0.39). There was no influence of serum iron and ferritin levels on thiobarbituric acid reactive species and Trolox equivalent antioxidant capacity values. Conclusion: This study shows an increase of oxidative stress and antioxidant capacity in beta-thalassemia heterozygotes, mainly in carriers of the CD39 mutation.
Resumo:
Os distúrbios naturais nas florestas tropicais contribuem para heterogeneidade do habitat, alterando os padrões de distribuição das aves. Estas alterações no ambiente elevam o metabolismo, promovendo distúrbios no balanço redox, e em consequência o estresse oxidativo. O objetivo deste estudo foi comparar a abundância de Willisornis poecilinotus entre clareiras e sub-bosque de dossel intacto associando-a a altura da vegetação na Floresta Nacional de Caxiuanã. A seguir, foi avaliado o estresse oxidativo e os fatores promotores de estresse foram determinados nos ambientes selecionados. Foram capturados 81 espécimes de W. poecilinotus. O número de capturas foi superior nas clareiras, quando comparado ao sub-bosque de dossel contínuo. Os espécimes capturados nas clareiras apresentaram índices de estresse oxidativo significativamente elevados. Foi observada correlação significativa entre os marcadores de estresse oxidativo nas clareiras. As variações do biomarcador de dano oxidativo e do estresse oxidativo foram explicadas somente pelo sítio de amostragem. Estes resultados sugerem que as clareiras são sítios de estímulos estressores para W. poecilinotus o que provavelmente resulta da maior demanda metabólica para novas estratégias de forrageio e para evitar a predação.
Resumo:
Morphine is a potent analgesic opioid used extensively for pain treatment. During the last decade, global consumption grew more than 4-fold. However, molecular mechanisms elicited by morphine are not totally understood. Thus, a growing literature indicates that there are additional actions to the analgesic effect. Previous studies about morphine and oxidative stress are controversial and used concentrations outside the range of clinical practice. Therefore, in this study, we hypothesized that a therapeutic concentration of morphine (1 μM) would show a protective effect in a traditional model of oxidative stress. We exposed the C6 glioma cell line to hydrogen peroxide (H2O2) and/or morphine for 24 h and evaluated cell viability, lipid peroxidation, and levels of sulfhydryl groups (an indicator of the redox state of the cell). Morphine did not prevent the decrease in cell viability provoked by H2O2) but partially prevented lipid peroxidation caused by 0.0025% H2O2) (a concentration allowing more than 90% cell viability). Interestingly, this opioid did not alter the increased levels of sulfhydryl groups produced by exposure to 0.0025% H2O2), opening the possibility that alternative molecular mechanisms (a direct scavenging activity or the inhibition of NAPDH oxidase) may explain the protective effect registered in the lipid peroxidation assay. Our results demonstrate, for the first time, that morphine in usual analgesic doses may contribute to minimizing oxidative stress in cells of glial origin. This study supports the importance of employing concentrations similar to those used in clinical practice for a better approximation between experimental models and the clinical setting.