12 resultados para Indexação automática

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, o método FDTD em coordenadas gerais (LN-FDTD) foi implementado para a análise de estruturas de aterramento com geometrias coincidentes ou não com o sistema de coordenadas cartesiano. O método soluciona as equações de Maxwell no domínio do tempo, permitindo a obtenção de dados a respeito da resposta transitória e de regime estacionário de estruturas diversas de aterramento. Uma nova formulação para a técnica de truncagem UPML em coordenadas gerais, para meios condutivos, foi desenvolvida e implementada para viabilizar a análise dos problemas (LN-UPML). Uma nova metodologia baseada em duas redes neurais artificiais é apresentada para a deteccão de defeitos em malhas de terra. O software FDTD em coordenadas gerais foi testado e validado para vários casos. Uma interface gráfica para usuários, chamada LANE SAGS, foi desenvolvida para simplificar o uso e automatizar o processamento dos dados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A análise de ocorrências no sistema de energia elétrica é de fundamento mportância para uma operação segura, e para manter a qualidade da energia elétrica lornecida aos consumidores. As concessionárias do setor de energia elétrica usam equipamentos, chamados registradores de perturbação (RP's), para monitora diagnosticar problemas nos sistemas elétrico e de proteção. As formas de onda normalmente analisadas nos centros de operação das concessionárias, são aquelas geradas por eventos que quase sempre causam a aocrtul je linhas devido a operação dos relés comandados pelos dispositivos de proteção .Contudo, uma grande quantidade de registros armazenados que podem conte informações importantes sobre o comportamento e desempenho do sistema elétricl jeixa de ser analisada. O objetivo desse trabalho é usar os dados disponíveis nos centros de ontrole, operação das concessionárias de energia elétrica obtidos pelos RP's, para classificar e quantificar de forma automática sinais que caracterizem problemas de qualidade da energia, quanto a variações de tensão de curta duração: afundamentos, elevações e interrupções. O método proposto usa a transformada wavelet para obter um vetor característico para as tensões das fases A, B e C, e uma rede neural probabilística para classificação. Os sinais classificados como apresentando variações de curta duração são quantilicados quanto a duração e amplitude, usando-se as propriedades da análise nultiresolução da decomposição do sinal. Esses parâmetros, então, irão formar uma Jase de dados onde procedimentos de análise estatística podem ser usados para gerar relatórios com as características da qualidade da energia. Os resultados obtidos com a metodologia proposta para um sistema real são também apresentados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese apresenta duas contribuições distintas na área de sistemas de comunicações sem fi o. Primeiro, é apresentada uma formulação analítica para a análise de desempenho de sistemas utilizando multiplexação multibanda por divisão ortogonal na frequência (MB-OFDM, do inglês Multi-Band Orthogonal Frequency-Division Multiplexing ) com um ltro notch para mitigar a interferência em banda estreita causada por outros sistemas que operam dentro da faixa de frequências alocada para sistemas UWB. Em seguida, um novo front end para classificação automática de modulações com o uso de aprendizado discriminativo é proposto. Esse front end pode ser utilizado por qualquer classi cador discriminativo e consiste em ordenar magnitude e fase do símbolos recebidos. Os resultados obtidos pelo classi cador proposto mostraram-se competitivos com outros algoritmos já existentes na literatura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é apresentado um modelo de redes neurais que será utilizado como ferramenta para uso no planejamento energético e na construção de cenários energéticos através da identificação e agrupamento de pixels representativos de classes de água, vegetação e antropização no entorno do reservatório de Tucuruí, Estado do Pará (bacia do rio Tocantins). Para o estudo, foram utilizadas fotografias aéreas ortorretificadas e um recorte da imagem do satélite Landsat, ambos obtidos em agosto de 2001 e classificados utilizando a métrica da mínima distância no software Matlab 7.3.0 (Matrix Laboratory - software de matemática aplicada) e no Arcview 3.2a (programa de Sistemas de Informações Geográficas). Para classificação da área no Matlab, foram utilizadas redes neurais competitivas, mais especificamente as redes de Kohonen que são caracterizadas por realizar um mapeamento de um espaço de dimensão n (número de entradas) para um espaço de dimensão m (número de saídas). Os resultados obtidos no classificador utilizando rede neural e no classificador do Arcview foram semelhantes, mas houve uma divergência no que diz respeito à imagem de alta e média resolução que pode ser justificada pelo fato de que a imagem de alta resolução espacial ocasiona muita variação espectral em algumas feições, gerando dificuldades nas classificações. Esse classificador automático é uma ferramenta importante para identificar oportunidades e potenciais a serem desenvolvidos na construção de cenários energéticos programados. Os resultados deste trabalho confirmam que a imagem de média resolução ainda é a mais indicada para resolver a maioria dos problemas que envolvem identificação de cobertura do solo para utilização em planejamento energético.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho desenvolveu-se uma solução para o clássico problema da determinação automática de litologias. Construiu-se um banco de dados utilizando-se a técnica de análise discriminante aplicada sobre trechos testemunhados de poços perfilados de um campo situado em lâmina d'água profunda localizado na bacia de Campos. A técnica de análise de agrupamento, utilizada por um grande número de pesquisadores, foi testada para o mesmo conjunto de dados porém não forneceu resultados satisfatórios em comparação com os obtidos com a análise discriminante. Os dados de perfis, após sofrerem correções ambientais, são colocados em profundidade com os dados de testemunhagem e determina-se uma função discriminante que classifica as respostas dos perfis de acordo com as litofácies descritas nos testemunhos. Dessa forma obtém-se um banco de dados, a partir do qual se faz a discriminação de litologias em poços, testemunhados ou não, da mesma área. O banco de dados assim construído permite sua atualização através da incorporação de trechos testemunhados de novos poços. Mostra-se a necessidade de agrupar as litologias em quatro litofácies principais para este campo de maneira a padronizar os resultados, diminuir as indeterminações e melhorar a apresentação final. Como produto final obtém-se uma curva discriminada de eletrofácies que reproduz, com algum grau de certeza, as litofácies que reproduzem as litologias esperadas em subsuperfície. Como exemplo de aplicação deste método, utilizou-se as curvas discriminadas para correlacionar três poços, utilizando para isto um algoritmo de correlação automática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duas das mais importantes atividades da interpretação de perfis para avaliação de reservatórios de hidrocarbonetos são o zoneamento do perfil (log zonation) e o cálculo da porosidade efetiva das rochas atravessadas pelo poço. O zoneamento é a interpretação visual do perfil para identificação das camadas reservatório e, consequentemente, dos seus limites verticais, ou seja, é a separação formal do perfil em rochas reservatório e rochas selante. Todo procedimento de zoneamento é realizado de forma manual, valendo-se do conhecimento geológico-geofísico e da experiência do intérprete, na avaliação visual dos padrões (características da curva do perfil representativa de um evento geológico) correspondentes a cada tipo litológico específico. O cálculo da porosidade efetiva combina tanto uma atividade visual, na identificação dos pontos representativos de uma particular rocha reservatório no perfil, como a escolha adequada da equação petrofísica que relaciona as propriedades físicas mensuradas da rocha com sua porosidade. A partir do conhecimento da porosidade, será estabelecido o volume eventualmente ocupado por hidrocarboneto. Esta atividade, essencial para a qualificação de reservatórios, requer muito do conhecimento e da experiência do intérprete de perfil para a efetiva avaliação da porosidade efetiva, ou seja, a porosidade da rocha reservatório, isenta do efeito da argila sobre a medida das propriedades físicas da mesma. Uma forma eficiente de automatizar estes procedimentos e auxiliar o geofísico de poço nestas atividades, que particularmente demandam grande dispêndio de tempo, é apresentado nesta dissertação, na forma de um novo perfil, derivado dos perfis tradicionais de porosidade, que apresenta diretamente o zoneamento. Pode-se destacar neste novo perfil as profundidades do topo e da base das rochas reservatório e das rochas selante, escalonado na forma de porosidade efetiva, denominado perfil de porosidade efetiva zoneado. A obtenção do perfil de porosidade efetiva zoneado é baseado no projeto e execução de várias arquiteturas de rede neural artificial, do tipo direta, com treinamento não supervisionado e contendo uma camada de neurônios artificiais, do tipo competitivo. Estas arquiteturas são projetadas de modo a simular o comportamento do intérprete de perfil, quando da utilização do gráfico densidade-neutrônico, para as situações de aplicabilidade do modelo arenito-folhelho. A aplicabilidade e limitações desta metodologia são avaliadas diretamente sobre dados reais, oriundos da bacia do Lago Maracaibo (Venezuela).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apesar do avanço tecnológico ocorrido na prospecção sísmica, com a rotina dos levantamentos 2D e 3D, e o significativo aumento na quantidade de dados, a identificação dos tempos de chegada da onda sísmica direta (primeira quebra), que se propaga diretamente do ponto de tiro até a posição dos arranjos de geofones, permanece ainda dependente da avaliação visual do intérprete sísmico. O objetivo desta dissertação, insere-se no processamento sísmico com o intuito de buscar um método eficiente, tal que possibilite a simulação computacional do comportamento visual do intérprete sísmico, através da automação dos processos de tomada de decisão envolvidos na identificação das primeiras quebras em um traço sísmico. Visando, em última análise, preservar o conhecimento intuitivo do intérprete para os casos complexos, nos quais o seu conhecimento será, efetivamente, melhor aproveitado. Recentes descobertas na tecnologia neurocomputacional produziram técnicas que possibilitam a simulação dos aspectos qualitativos envolvidos nos processos visuais de identificação ou interpretação sísmica, com qualidade e aceitabilidade dos resultados. As redes neurais artificiais são uma implementação da tecnologia neurocomputacional e foram, inicialmente, desenvolvidas por neurobiologistas como modelos computacionais do sistema nervoso humano. Elas diferem das técnicas computacionais convencionais pela sua habilidade em adaptar-se ou aprender através de uma repetitiva exposição a exemplos, pela sua tolerância à falta de alguns dos componentes dos dados e pela sua robustez no tratamento com dados contaminados por ruído. O método aqui apresentado baseia-se na aplicação da técnica das redes neurais artificiais para a identificação das primeiras quebras nos traços sísmicos, a partir do estabelecimento de uma conveniente arquitetura para a rede neural artificial do tipo direta, treinada com o algoritmo da retro-propagação do erro. A rede neural artificial é entendida aqui como uma simulação computacional do processo intuitivo de tomada de decisão realizado pelo intérprete sísmico para a identificação das primeiras quebras nos traços sísmicos. A aplicabilidade, eficiência e limitações desta abordagem serão avaliadas em dados sintéticos obtidos a partir da teoria do raio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: We present here a methodology for the rapid interpretation of aeromagnetic data in three dimensions. An estimation of the x, y and z coordinates of prismatic elements is obtained through the application of "Euler's Homogeneous equation" to the data. In this application, it is necessary to have only the total magnetic field and its derivatives. These components can be measured or calculated from the total field data. In the use of Euler's Homogeneous equation, the structural index, the coordinates of the corners of the prism and the depth to the top of the prism are unknown vectors. Inversion of the data by classical least-squares methods renders the problem ill-conditioned. However, the inverse problem can be stabilized by the introduction of both a priori information within the parameter vector together with a weighting matrix. The algorithm was tested with synthetic and real data in a low magnetic latitude region and the results were satisfactory. The applicability of the theorem and its ambiguity caused by the lack of information about the direction of total magnetization, inherent in all automatic methods, is also discussed. As an application, an area within the Solimões basin was chosen to test the method. Since 1977, the Solimões basin has become a center of exploration activity, motivated by the first discovery of gas bearing sandstones within the Monte Alegre formation. Since then, seismic investigations and drilling have been carried on in the region. A knowledge of basement structures is of great importance in the location of oil traps and understanding the tectonic history of this region. Through the application of this method a preliminary estimate of the areal distribution and depth of interbasement and sedimentary magnetic sources was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho descreve um sistema de análise de dados com a finalidade de gerar um sistema de controle utilizando técnica inteligente para adição de fluoreto de alumínio (AlF3) em fornos de redução de alumínio. O projeto baseia-se nos conceitos de lógica fuzzy, nos quais o conhecimento acumulado pelo especialista do processo é traduzido de maneira qualitativa em um conjunto de regras linguísticas do tipo SE ENTÃO. A utilização desta técnica inteligente para o controle de adição de fluoreto busca representar explicitamente um conhecimento qualitativo, detido pelos operadores de cubas eletrolíticas. Devido o sistema convencional não contemplar as variações dos fenômenos que envolvem a dinâmica do processo, um controlador fuzzy foi implmentado no sistema real para tomadas de decisões, utilizando o modelo mínimo de Mandani. Baseado neste modelo, as variáveis de processo para a entrada do sistema fuzzy, tais como temperatura de banho e percentual de fluoreto foram manipuladas para estimar a tendência de subida e descida, respectivamente, através do método mínimos quadrados(MMQ). O controlador fuzzy é aplicado para calcular a quantidade de fluoreto de alumínio (AlF3) a ser adicionado na cuba eletrolítica de forma automática sem a necessidade da intervenção do especialista do processo. A motivação para o uso de um sistema de controle fuzzy se deve ao fato de não se ter disponível um modelo dinâmico do processo de adição do fluoreto na cuba eletrolítica. Esta falta de modelagem se deve ao fato de grande complexidade dos fenômenos envolvidos em uma cuba que são processos termodinâmicos e eletromagnéticos acoplados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O processamento de voz tornou-se uma tecnologia cada vez mais baseada na modelagem automática de vasta quantidade de dados. Desta forma, o sucesso das pesquisas nesta área está diretamente ligado a existência de corpora de domínio público e outros recursos específicos, tal como um dicionário fonético. No Brasil, ao contrário do que acontece para a língua inglesa, por exemplo, não existe atualmente em domínio público um sistema de Reconhecimento Automático de Voz (RAV) para o Português Brasileiro com suporte a grandes vocabulários. Frente a este cenário, o trabalho tem como principal objetivo discutir esforços dentro da iniciativa FalaBrasil [1], criada pelo Laboratório de Processamento de Sinais (LaPS) da UFPA, apresentando pesquisas e softwares na área de RAV para o Português do Brasil. Mais especificamente, o presente trabalho discute a implementação de um sistema de reconhecimento de voz com suporte a grandes vocabulários para o Português do Brasil, utilizando a ferramenta HTK baseada em modelo oculto de Markov (HMM) e a criação de um módulo de conversão grafema-fone, utilizando técnicas de aprendizado de máquina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aborda a classificação automática de faltas do tipo curto-circuito em linhas de transmissão. A maioria dos sistemas de transmissão possuem três fases (A, B e C). Por exemplo, um curto-circuito entre as fases A e B pode ser identicado como uma falta\AB". Considerando a possibilidade de um curto-circuito com a fase terra (T), a tarefa ao longo desse trabalho de classificar uma série temporal em uma das 11 faltas possíveis: AT, BT, CT, AB, AC, BC, ABC, ABT, ACT, BCT, ABCT. Estas faltas são responsáveis pela maioria dos distúrbios no sistema elétrico. Cada curto-circuito é representado por uma seqüência (série temporal) e ambos os tipos de classificação, on-line (para cada curto segmento extraído do sinal) e off-line (leva em consideração toda a seqüência), são investigados. Para evitar a atual falta de dados rotulados, o simulador Alternative Transient Program (ATP) é usado para criar uma base de dados rotulada e disponibilizada em domínio público. Alguns trabalhos na literatura não fazem distinção entre as faltas ABC e ABCT. Assim, resultados distinguindo esse dois tipos de faltas adotando técnicas de pré-processamento, diferentes front ends (por exemplo wavelets) e algoritmos de aprendizado (árvores de decisão e redes neurais) são apresentados. O custo computacional estimado durante o estágio de teste de alguns classificadores é investigado e a escolha dos parâmetros dos classificadores é feita a partir de uma seleção automática de modelo. Os resultados obtidos indicam que as árvores de decisão e as redes neurais apresentam melhores resultados quando comparados aos outros classificadores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta uma nova abordagem para avaliação automática de consultas SQL. Essa abordagem propõe uma solução para o desafio de estimular o aprendiz a aperfeiçoar a sua solução: buscando, além de uma resposta que retorna o resultado correto, uma consulta com complexidade próxima da solução ótima. Essa proposta pode ser utilizada em ambientes de educação a distancia ou na educação presencial em atividades de laboratório, incluindo as avaliações. A solução proposta tem como vantagens: (1) o aprendiz recebe um feedback instantâneo durante a atividade prática de programação, o qual permite ao aprendiz refatorar a sua solução em direção a uma solução ótima; (2) completa integração entre o ensino de conceitos de programação com exemplo de fragmentos de programas executáveis on-line; (3) monitoramento das atividades do aprendiz (quantos exemplos foram executados; em cada exercício quantas tentativas de execução foram feitas, etc). Este trabalho é um primeiro passo na direção de construção de um ambiente totalmente assistido (por exemplo com avaliação automática) para ensino da linguagem de programação SQL, onde o professor é liberado do árduo trabalho de correção de comandos SQL podendo realizar tarefas pedagógicas mais relevantes. O método, fundamentado em estatística e métricas da Engenharia de Software, pode ser adaptado para outras linguagens tais como Java e Pascal. Além disso, o LabSQL serve com um laboratório para experimentação de duas novas técnicas, uma de avaliação e outra de acompanhamento, que estão sendo pesquisadas em trabalhos em paralelos: (a) avaliação automática de questões conceituais discursivas, além de permitir as tradicionais perguntas objetivas, (b) método de acompanhamento através de montagem de uma rubrica de avaliação.