1 resultado para Image Segmentation

em Universidade Federal do Pará


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apresenta-se nesta dissertação a proposta de um algoritmo supervisionado de classificação de imagens de sensoreamento remoto, composto de três etapas: remoção ou suavização de nuvens, segmentação e classificação.O método de remoção de nuvens usa filtragem homomórfica para tratar as obstruções causadas pela presença de nuvens suaves e o método Inpainting para remover ou suavizar a preseça de sombras e nuvens densas. Para as etapas de segmentação e classificação é proposto um método baseado na energia AC dos coeficientes da Transformada Cosseno Discreta (DCT). O modo de classificação adotado é do tipo supervisionado. Para avaliar o algioritmo foi usado um banco de 14 imagens captadas por vários sensores, das quais 12 possuem algum tipo de obstrução. Para avaliar a etapa de remoção ou suavização de nuvens e sombras são usados a razão sinal-ruído de pico (PSNR) e o coeficiente Kappa. Nessa fase, vários filtros passa-altas foram comparados para a escolha do mais eficiente. A segmentação das imagens é avaliada pelo método da coincidência entre bordas (EBC) e a classificação é avaliada pela medida da entropia relativa e do erro médio quadrático (MSE). Tão importante quanto as métricas, as imagens resultantes são apresentadas de forma a permitir a avaliação subjetiva por comparação visual. Os resultados mostram a eficiência do algoritmo proposto, principalmente quando comparado ao software Spring, distribuído pelo Instituto Nacional de Pesquisas Espaciais (INPE).