3 resultados para Identificação visual
em Universidade Federal do Pará
Identificação automática das primeiras quebras em traços sísmicos por meio de uma rede neural direta
Resumo:
Apesar do avanço tecnológico ocorrido na prospecção sísmica, com a rotina dos levantamentos 2D e 3D, e o significativo aumento na quantidade de dados, a identificação dos tempos de chegada da onda sísmica direta (primeira quebra), que se propaga diretamente do ponto de tiro até a posição dos arranjos de geofones, permanece ainda dependente da avaliação visual do intérprete sísmico. O objetivo desta dissertação, insere-se no processamento sísmico com o intuito de buscar um método eficiente, tal que possibilite a simulação computacional do comportamento visual do intérprete sísmico, através da automação dos processos de tomada de decisão envolvidos na identificação das primeiras quebras em um traço sísmico. Visando, em última análise, preservar o conhecimento intuitivo do intérprete para os casos complexos, nos quais o seu conhecimento será, efetivamente, melhor aproveitado. Recentes descobertas na tecnologia neurocomputacional produziram técnicas que possibilitam a simulação dos aspectos qualitativos envolvidos nos processos visuais de identificação ou interpretação sísmica, com qualidade e aceitabilidade dos resultados. As redes neurais artificiais são uma implementação da tecnologia neurocomputacional e foram, inicialmente, desenvolvidas por neurobiologistas como modelos computacionais do sistema nervoso humano. Elas diferem das técnicas computacionais convencionais pela sua habilidade em adaptar-se ou aprender através de uma repetitiva exposição a exemplos, pela sua tolerância à falta de alguns dos componentes dos dados e pela sua robustez no tratamento com dados contaminados por ruído. O método aqui apresentado baseia-se na aplicação da técnica das redes neurais artificiais para a identificação das primeiras quebras nos traços sísmicos, a partir do estabelecimento de uma conveniente arquitetura para a rede neural artificial do tipo direta, treinada com o algoritmo da retro-propagação do erro. A rede neural artificial é entendida aqui como uma simulação computacional do processo intuitivo de tomada de decisão realizado pelo intérprete sísmico para a identificação das primeiras quebras nos traços sísmicos. A aplicabilidade, eficiência e limitações desta abordagem serão avaliadas em dados sintéticos obtidos a partir da teoria do raio.
Resumo:
A identificação de fácies em um poço não testemunhado é um dos problemas clássicos da avaliação de formação. Neste trabalho este problema é tratado em dois passos, no primeiro produz-se a codificação da informação geológica ou da descrição das fácies atravessadas em um poço testemunhado em termos das suas propriedades físicas registradas nos perfis geofísicos e traduzidas pelos parâmetros L e K, que são obtidos a partir dos perfis de porosidade (densidade, sônico e porosidade neutrônica) e pela argilosidade (Vsh) calculada pelo perfil de raio gama natural. Estes três parâmetros são convenientemente representados na forma do Gráfico Vsh-L-K. No segundo passo é realizada a interpretação computacional do Gráfico Vsh-L-K por um algoritmo inteligente construído com base na rede neural competitiva angular generalizada, que é especializada na classificação de padrões angulares ou agrupamento de pontos no espaço n-dimensional que possuem uma envoltória aproximadamente elipsoidal. Os parâmetros operacionais do algoritmo inteligente, como a arquitetura da rede neural e pesos sinápticos são obtidos em um Gráfico Vsh-L-K, construído e interpretado com as informações de um poço testemunhado. Assim, a aplicação deste algoritmo inteligente é capaz de identificar e classificar as camadas presentes em um poço não testemunhado, em termos das fácies identificadas no poço testemunhado ou em termos do mineral principal, quando ausentes no poço testemunhado. Esta metodologia é apresentada com dados sintéticos e com perfis de poços testemunhados do Campo de Namorado, na Bacia de Campos, localizada na plataforma continental do Rio de Janeiro, Brasil.
Resumo:
A fusão de imagens multisensor tem sido um procedimento amplamente utilizado em função da natureza complementar dos vários conjuntos de dados. Este artigo compara o desempenho de quatro métodos diferentes para fusão de imagens Landsat-7 ETM+ e RADARSAT-1 W1. A comparação foi baseada nas características espectrais das imagens, utilizando-se de análise estatística e visual dos produtos gerados. Quatro métodos foram usados para a fusão das imagens Landsat-7 ETM+ e RADARSAT-1 W1: i) fusão do SAR (radar de abertura sintética) com a tríade selecionada pelo OIF (Optimum Index Factor); ii) realce por decorrelação da tríade selecionada pelo OIF, seguida da fusão com SAR; iii) ACP (Análise por Componentes Principais) para as seis bandas ETM+ do espectro refletido (1, 2, 3, 4, 5 e 7) e posterior fusão das três primeiras componentes principais (1CP; 2CP; 3CP) com o SAR; iv) SPC-SAR (Principal Componente Seletivo - SAR). O produto SPC-SAR mostrou melhor desempenho na identificação das feições costeiras e permitiu o realce mais efetivo dos diferentes ambientes.