55 resultados para Hiker Dice. Algoritmo Exato. Algoritmos Heurísticos
em Universidade Federal do Pará
Resumo:
Na presente tese propõe-se uma metodologia de ajuste ótimo dos controladores do conversor interligado ao rotor de aerogeradores de indução duplamente excitados (DFIG), utilizando algoritmos genéticos (AG), com o objetivo de melhorar a segurança e a robustez do sistema elétrico de potência, permitindo que os aerogeradores DFIG participem da gestão técnica do sistema. Para garantir este objetivo, é utilizada uma estratégia de proteção do tipo “crow-bar” durante a falta, mantendo o conversor interligado ao rotor conectado à máquina. Imediatamente após a eliminação da falta, o “crow-bar” é desativado, e simultaneamente os controladores ótimos do conversor interligado ao rotor são acionados, previamente ajustados pelo AG, a fim de melhorar a capacidade de sobrevivência a afundamentos de tensão “ridethrough capability” e a margem de estabilidade global do sistema elétrico. Para validação da metodologia ótima desenvolvida foram realizadas simulações computacionais utilizando uma rede elétrica real, em três condições operacionais distintas.
Resumo:
Este trabalho tem como objetivo apresentar um aplicativo para auxiliar no planejamento de sistemas elétricos, através de uma metodologia para controle de tensão e minimização das perdas, através da otimização da injeção de reativos, mantendo a tensão nos barramentos dentro de limites pré estabelecidos. A metodologia desenvolvida é baseada em um sistema hibrido, que utiliza inteligência computacional baseada em um algoritmo genético acoplado a um programa de fluxo de carga (ANAREDE), que interagem para produzir uma solução ótima. Os resultados obtidos mostram que a técnica baseada no algoritmo genético é bem adequada ao tipo de problema ora tratado referente a minimização de perdas reativas e a melhoria do perfil da tensão em redes elétricas, sendo este atualmente um problema crítico em parte do Sistema Interligado Nacional (SIN).
Resumo:
As Redes Ópticas Passivas (Passive Optical Networks - PONs) vêm experimentando um sólido crescimento nas últimas décadas por terem sido concebidas como uma excelente alternativa para a solução de um dos maiores problemas para as redes de telecomunicações: o gargalo nas redes de acesso. A próxima geração desta tecnologia, as chamadas Next Genaration PONs (NG-PON), surgem como consequência da evolução das tecnologias ópticas e oferecem suporte aos serviços de próxima geração, melhorando os parâmetros de desempenho das TDM-PONs e inclusive aumentando a área de cobertura destas redes. Esta expansão geográfica beneficia as empresas de telecomunicações que passam a focar seus esforços na simplificação de suas infra-estruturas através da unificação das redes metropolitanas, de acesso e de backhaul, reduzindo a quantidade de nós e, consequentemente, de custos operacionais e financeiros. Trata-se de uma significativa mudança no cenário das redes de acesso que passam a ter grandes distâncias entre as Optical Network Units (ONUs) e o Central Office (CO) e uma imensa variedade de serviços, tornando fundamental a presença de algoritmos de agendamento capazes de gerenciar todos os recursos compartilhados de forma eficiente, ao mesmo tempo que garantem controle e justeza na alocação dinâmica dos tráfegos upstream e downstream. É a partir deste contexto que esta dissertação tem como objetivo geral apresentar a proposta de um algoritmo híbrido de agendamento de grants baseado na priorização de filas (Hybrid Grant Scheduler based on Priority Queuing – HGSPQ), que além de gerenciar todos os recursos em WDM-PONs, busca oferecer eficiência e controle ao Optical Line Terminal (OLT) no agendamento dinâmico dos tráfegos. Os resultados apresentados foram extraídos de cenários desenvolvidos em ambiente de simulação computacional e se baseiam nas métricas de atraso e vazão para avaliação de seu desempenho. Também será avaliado como a quantidade de recursos no OLT interfere nestas métricas.
Resumo:
Este trabalho apresenta um método para encontrar um conjunto de pontos de operação, os quais são ótimos de Pareto com diversidade, para linhas digitais de assinante (DSL - digital subscriber line). Em diversos trabalhos encontrados na literatura, têm sido propostos algoritmos para otimização da transmissão de dados em linhas DSL, que fornecem como resultado apenas um ponto de operação para os modems. Esses trabalhos utilizam, em geral, algoritmos de balanceamento de espectro para resolver um problema de alocação de potência, o que difere da abordagem apresentada neste trabalho. O método proposto, chamado de diverseSB , utiliza um processo híbrido composto de um algoritmo evolucionário multiobjetivo (MOEA - multi-objective evolutionary algorithm), mais precisamente, um algoritmo genético com ordenamento por não-dominância (NSGA-II - Non-Dominated Sorting Genetic Algorithm II), e usando ainda, um algoritmo de balanceamento de espectro. Os resultados obtidos por simulações mostram que, para uma dada diversidade, o custo computacional para determinar os pontos de operação com diversidade usando o algoritmo diverseSB proposto é muito menor que métodos de busca de “força bruta”. No método proposto, o NSGA-II executa chamadas ao algoritmo de balanceamento de espectro adotado, por isso, diversos testes envolvendo o mesmo número de chamadas ao algoritmo foram realizadas com o método diverseSB proposto e o método de busca por força bruta, onde os resultados obtidos pelo método diverseSB proposto foram bem superiores do que os resultados do método de busca por força bruta. Por exemplo, o método de força bruta realizando 1600 chamadas ao algoritmo de balanceamento de espectro, obtém um conjunto de pontos de operação com diversidade semelhante ao do método diverseSB proposto com 535 chamadas.
Resumo:
Há muitos anos, técnicas de Computação Evolucionária vem sendo aplicadas com sucesso na solução dos mais variados tipos de problemas de otimização. Na constante procura pelo ótimo global e por uma melhor exploração da superfície de busca, as escolhas para ajustar estes métodos podem ser exponencialmente complexas e requerem uma grande quantidade de intervenção humana. Estes modelos tradicionais darwinianos apóiam-se fortemente em aleatoriedade e escolhas heurísticas que se mantém fixas durante toda a execução, sem que acompanhem a variabilidade dos indivíduos e as eventuais mudanças necessárias. Dadas estas questões, o trabalho introduz a combinação de aspectos da Teoria do Design Inteligente a uma abordagem hibrida de algoritmo evolucionário, através da implementação de um agente inteligente o qual, utilizando lógica fuzzy, monitora e controla dinamicamente a população e seis parâmetros definidos de uma dada execução, ajustando-os para cada situação encontrada durante a busca. Na avaliação das proposições foi construído um protótipo sobre a implementação de um algoritmo genético para o problema do caixeiro viajante simétrico aplicado ao cenário de distância por estradas entre as capitais brasileiras, o que permitiu realizar 580 testes, simulações e comparações entre diferentes configurações apresentadas e resultados de outras técnicas. A intervenção inteligente entrega resultados que, com sucesso em muitos aspectos, superam as implementações tradicionais e abrem um vasto espaço para novas pesquisas e estudos nos aqui chamados: “Algoritmos Evolucionários Híbridos Auto-Adaptáveis”, ou mesmo, “Algoritmos Evolucionários Não-Darwinianos”.
Resumo:
A eficiência espectral em redes baseadas na tecnologia de Rádio Cognitivo (RC) pode ser comprometida caso o rádio seja utilizado por muito tempo para a detecção em vez da transmissão de dados. Por isso, tornam-se necessários esquemas de sensoriamento que tenham o objetivo de obter o máximo possível de utilização do espectro, evitando sensoriamento desnecessário, bem como, obtendo o mínimo de interferência na transmissão do usuário primário decorrente de detecção incorreta de sua transmissão. Neste trabalho, propomos a utilização de Algoritmos Genéticos para realizar a adaptação do período de sensoriamento. O objetivo é obter um período de sensoriamento ótimo para os canais com vistas a maximizar a descoberta de oportunidades no espectro e minimizar o overhead decorrente do sensoriamento. A maioria dos trabalhos relacionados a este assunto considera que o overhead de sensoriamento é fixo, não levando em conta que alguns canais podem ter menor tolerância à interferência que outros. A proposta apresentada neste trabalho pode adaptar-se aos requisitos de tolerância à interferência no canal licenciado por meio da determinação de um período de sensoriamento que otimize as oportunidades para qualquer valor de overhead definido. Nossa proposta consegue obter um ganho de até 90% em relação às técnicas não otimizadas no número de oportunidades encontradas, até 40,9% no ganho de transmissão útil e obteve uma redução no tempo de interferência de 66,83%, bem como resultados similares aos obtidos por uma proposta otimizada presente na literatura, com a vantagem de permitir a adaptação do overhead de sensoriamento.
Resumo:
Esta dissertação apresenta os algoritmos considerados estado-da-arte para gerenciamento dinâmico de espectro (DSM). As técnicas de otimização utilizadas nos algoritmos DSM são abordadas e brevemente discutidas para melhor entendimento, descrição e comparação dos algoritmos. A análise comparativa entre os algoritmos foi realizada considerando o ganho em taxa (kbps) obtido em simulações. Para tanto, foi realizado em laboratório um conjunto de medições de função de transferência direta e de acoplamento, posteriormente utilizadas nas simulações dos algoritmos IWF, ISB e SCALE. Os resultados obtidos nas simulações através do uso das funções de transferência medidas mostraram melhor desempenho quando comparados aos demais resultados ao considerar funções de transferência obtidas a partir do padrão 1% pior caso, resultado este reflexo da aproximação 1% em que os pares apresentam maiores níveis de crosstalk em todas as frequências da função de transferência. Dentre os algoritmos comparados, o ISB e SCALE obtiveram desempenho semelhante em canais padronizados, ficando o IWF com o desempenho próximo ao SSM. No entanto, nas simulações em cenários com canais medidos, os três algoritmos tiveram ganhos muito próximo devido ao baixo nível de crosstalk.
Resumo:
Várias das técnicas tradicionais de Mineração de Dados têm sido aplicadas com êxito e outras esbarram em limitações, tanto no desempenho como na qualidade do conhecimento gerado. Pesquisas recentes têm demonstrado que as técnicas na área de IA, tais como Algoritmo Genético (AG) e Lógica Difusa (LD), podem ser utilizadas com sucesso. Nesta pesquisa o interesse é revisar algumas abordagens que utilizam AG em combinação com LD de forma híbrida para realizar busca em espaços grandes e complexos. Este trabalho apresenta o Algoritmo Genético (AG), utilizando Lógica Difusa, para a codificação, avaliação e reprodução dos cromossomos, buscando classificar dados através de regras extraídas de maneira automática com a evolução dos cromossomos. A Lógica Difusa é utilizada para deixar as regras mais claras e próximas da linguagem humana, utilizando representações lingüísticas para identificar dados contínuos.
Resumo:
Em muitos problemas de otimização há dificuldades em alcançar um resultado ótimo ou mesmo um resultado próximo ao valor ótimo em um tempo viável, principalmente quando se trabalha em grande escala. Por isso muitos desses problemas são abordados por heurísticas ou metaheurísticas que executam buscas por melhores soluções dentro do espaço de busca definido. Dentro da computação natural estão os Algoritmos Culturais e os Algoritmos Genéticos, que são considerados metaheurísticas evolutivas que se complementam devido ao mecanismo dual de herança cultura/genética. A proposta do presente trabalho é estudar e utilizar tais mecanismos acrescentando tanto heurísticas de busca local como multipopulações aplicados em problemas de otimização combinatória (caixeiro viajante e mochila), funções multimodais e em problemas restritos. Serão executados alguns experimentos para efetuar uma avaliação em relação ao desempenho desses mecanismos híbridos e multipopulacionais com outros mecanismos dispostos na literatura de acordo com cada problema de otimização aqui abordado.
Resumo:
Nesta dissertação apresenta-se o problema de redução de ordem de modelos dinâmicos lineares, sob o ponto de vista de otimização via Algoritmos Genéticos. Uma função custo, obtida a partir da norma dos coeficientes do numerador da função de transferência do erro entre o modelo original e o reduzido, e minimizada por meio de um algoritmo genético, com consequente calculo dos parâmetros do modelo reduzido. O procedimento e aplicado em alguns exemplos que demonstram a validade da abordagem.
Resumo:
Este trabalho apresenta o desenvolvimento de um algoritmo computacional para análise do espalhamento eletromagnético de nanoestruturas plasmônicas isoladas. O Método dos Momentos tridimensional (MoM-3D) foi utilizado para resolver numericamente a equação integral do campo elétrico, e o modelo de Lorentz-Drude foi usado para representar a permissividade complexa das nanoestruturas metálicas. Baseado nesta modelagem matemática, um algoritmo computacional escrito em linguagem C foi desenvolvido. Como exemplo de aplicação e validação do código, dois problemas clássicos de espalhamento eletromagnético de nanopartículas metálicas foram analisados: nanoesfera e nanobarra, onde foram calculadas a resposta espectral e a distribuição do campo próximo. Os resultados obtidos foram comparados com resultados calculados por outros modelos e observou-se uma boa concordância e convergência entre eles.
Resumo:
As Redes de Sensores Sem Fio possuem capacidades limitadas de processamento, armazenamento, comunicação (largura de banda) e fonte de energia, além de possuírem características e requisitos básicos de uma RSSF como: necessidade de se auto-organizar, comunicação com difusão de curto alcance e roteamento com múltiplos saltos. Neste trabalho é proposto uma ferramenta que otimize o posicionamento e os pacotes entregues através do uso de Algoritmo Genético (AG). Para solucionar o problema de roteamento que melhore o consumo de energia e maximize a agregação de dados é proposto a utilização de lógica fuzzy no protocolo de roteamento Ad hoc Ondemand Distance Vector (AODV). Esta customização é intitulada AODV – Fuzzy for Wireless Sensor Networks (AODV-FWSN). Os resultados mostram que a solução proposta é eficiente e consegue prolongar a vida útil da RSSF e melhorar a taxa de entrega de dados quando comparado com soluções similares.
Resumo:
Esta dissertação apresenta uma metodologia baseada em algoritmo genético (AG) para determinar modelos dinâmicos equivalentes de parques eólicos com geradores de indução em gaiola de esquilo ( GIGE) e geradores de indução duplamente alimentados ( GIDA), apresentando parâmetros elétricos e mecânicos distintos. A técnica se baseia em uma formulação multiobjetiva solucionada por um AG para minimizar os erros quadráticos das potências ativa e reativa entre modelo de um único gerador equivalente e o modelo do parque eólico investigado. A influência do modelo equivalente do parque eólico no comportamento dinâmico dos geradores síncronos é também investigada por meio do método proposto. A abordagem é testada em um parque eólico de 10MW composto por quatro turbinas eólicas ( 2x2MW e 2x3MW), consistindo alternadamente de geradores GIGE e GIDA interligados a uma barra infinita e posteriormente a rede elétrica do IEEE 14 barras. Os resultados obtidos pelo uso do modelo dinâmico detalhado para a representação do parque eólico são comparados aos do modelo equivalente proposto para avaliar a precisão e o custo computacional do modelo proposto.
Resumo:
Ainda hoje, a migração em tempo é o processo de imageamento substancialmente empregado na indústria do petróleo. Tal popularidade é devida ao seu alto grau de eficiência e robustez, além de sua habilidade em focalizar refletores nos mais variados ambientes geológicos. Entretanto, em áreas de alta complexidade geológica a migração em tempo falha de tal forma que a migração em profundidade e um campo de velocidade em profundidade são indispensáveis. Esse campo é geralmente obtido através de processos tomográficos partindo de um campo de velocidade inicial. A conversão de campos de velocidade de tempo para profundidade é uma forma rápida de se obter um campo inicial mais consistente geologicamente para tais processos. Alguns algoritmos de conversão tempo-profundidade recentemente desenvolvidos baseados no traçamento de raios-imagem são revistos e um algoritmo alternativo baseado na propagação da frente de onda-imagem é proposto. Os algoritmos são aplicados a dados sintéticos bidimensionais e avaliados de acordo com suas eficiência e acurácia, destacando suas vantagens, desvantagens e limitações na obtenção de campos de velocidade em profundidade.
Resumo:
Esta dissertação apresenta um método baseado em algoritmos genéticos para cálculo de equivalentes dinâmicos de sistemas de potência visando representar partes de um sistema para estudos de análise de estabilidade transitória. O modelo do equivalente dinâmico é obtido por meio da identificação de parâmetros de geradores síncronos, localizados nas barras de fronteira entre o sistema externo e o subsistema em estudo. Um indicie é usado para avaliar a proximidade entre as simulações realizadas usando o modelo completo e o modelo reduzido, após serem submetidos a grandes distúrbios no subsistema em estudo. Diferentes condições operacionais foram levadas em conta. As simulações foram realizadas usando os softwares GAOT “The Genetic Algorithm Optimization Toolbox”, ANAREDE e ANATEM. Esse método foi testado no sistema teste duas áreas do Kundur e no Sistema Interligado Nacional (SIN). Os resultados validaram a eficácia do método desenvolvido para o cálculo de equivalentes dinâmicos robustos.