7 resultados para Finite elements methods, Radial basis function, Interpolation, Virtual leaf, Clough-Tocher method
em Universidade Federal do Pará
Resumo:
O imageamento da porosidade é uma representação gráfica da distribuição lateral da porosidade da rocha, estimada a partir de dados de perfis geofísicos de poço. Apresenta-se aqui uma metodologia para produzir esta imagem geológica, totalmente independente da intervenção do intérprete, através de um algoritmo, dito, interpretativo baseado em dois tipos de redes neurais artificiais. A primeira parte do algoritmo baseia-se em uma rede neural com camada competitiva e é construído para realizar uma interpretação automática do clássico gráfico o Pb - ΦN, produzindo um zoneamento do perfil e a estimativa da porosidade. A segunda parte baseia-se em uma rede neural com função de base radial, projetado para realizar uma integração espacial dos dados, a qual pode ser dividida em duas etapas. A primeira etapa refere-se à correlação de perfis de poço e a segunda à produção de uma estimativa da distribuição lateral da porosidade. Esta metodologia ajudará o intérprete na definição do modelo geológico do reservatório e, talvez o mais importante, o ajudará a desenvolver de um modo mais eficiente as estratégias para o desenvolvimento dos campos de óleo e gás. Os resultados ou as imagens da porosidade são bastante similares às seções geológicas convencionais, especialmente em um ambiente deposicional simples dominado por clásticos, onde um mapa de cores, escalonado em unidades de porosidade aparente para as argilas e efetiva para os arenitos, mostra a variação da porosidade e a disposição geométrica das camadas geológicas ao longo da seção. Esta metodologia é aplicada em dados reais da Formação Lagunillas, na Bacia do Lago Maracaibo, Venezuela.
Resumo:
Na maioria dos métodos de exploração geofísica, a interpretação é feita assumindo-se um modelo da Terra uniformemente estratificado. Todos os métodos de inversão, inclusive o de dados eletromagnéticos, exigem técnica de modelamento teórico de modo a auxiliar a interpretação. Na literatura os dados são geralmente interpretados em termos de uma estrutura condutiva unidimensional; comumente a Terra é assumida ser horizontalmente uniforme de modo que a condutividade é função somente da profundidade. Neste trabalho uma técnica semi-analítica de modelagem desenvolvida por Hughes (1973) foi usada para modelar a resposta magnética de duas camadas na qual a interface separando as camadas pode ser representada por uma expansão em série de Fourier. A técnica envolve um método de perturbação para encontrar o efeito de um contorno senoidal com pequenas ondulações. Como a perturbação é de primeira ordem a solução obtida é linear, podemos então usar o princípio da superposição e combinar soluções para várias senoides de forma a obter a solução para qualquer dupla camada expandida em série de Fourier. Da comparação com a técnica de elementos finitos, as seguintes conclusões podem ser tiradas: • Para um modelo de dupla camada da Terra, as camadas separadas por uma interface cuja profundidade varia senoidalmente em uma direção, as respostas eletromagnética são muito mais fortes quando a espessura da primeira camada é da ordem do skin depth da onda eletromagnética no meio, e será tanto maior quanto maior for o contraste de condutividade entre as camadas; • Por outro lado, a resistividade aparente para este modelo não é afetada pela mudança na frequência espacial (v) do contorno; • Em caso do uso da solução geral para qualquer dupla camada na Terra cuja interface possa ser desenvolvida em série de Fourier, esta técnica produziu bons resultados quando comparado com a técnica de elementos finitos. A linerização restringe a aplicação da técnica para pequenas estruturas, apesar disso, uma grande quantidade de estruturas pode ser modelada de modo simples e com tempo computacional bastante rápido; • Quando a dimensão da primeira camada possui a mesma ordem de grandeza da estrutura, esta técnica não é recomendada, porque para algumas posições de sondagem, as curvas de resistividade aparente obtidas mostram um pequeno deslocamento quando comparadas com as curvas obtidas por elementos finitos.
Resumo:
Utilizou-se o método seqüencial Monte Carlo / Mecânica Quântica para obterem-se os desvios de solvatocromismo e os momentos de dipolo dos sistemas de moléculas orgânicas: Uracil em meio aquoso, -Caroteno em Ácido Oléico, Ácido Ricinoléico em metanol e em Etanol e Ácido Oléico em metanol e em Etanol. As otimizações das geometrias e as distribuições de cargas foram obtidas através da Teoria do Funcional Densidade com o funcional B3LYP e os conjuntos de funções de base 6-31G(d) para todas as moléculas exceto para a água e Uracil, as quais, foram utilizadas o conjunto de funções de base 6-311++G(d,p). No tratamento clássico, Monte Carlo, aplicou-se o algoritmo Metropólis através do programa DICE. A separação de configurações estatisticamente relevantes para os cálculos das propriedades médias foi implementada com a utilização da função de auto-correlação calculada para cada sistema. A função de distribuição radial dos líquidos moleculares foi utilizada para a separação da primeira camada de solvatação, a qual, estabelece a principal interação entre soluto-solvente. As configurações relevantes da primeira camada de solvatação de cada sistema foram submetidas a cálculos quânticos a nível semi-empírico com o método ZINDO/S-CI. Os espectros de absorção foram obtidos para os solutos em fase gasosa e para os sistemas de líquidos moleculares comentados. Os momentos de dipolo elétrico dos mesmos também foram obtidos. Todas as bandas dos espectros de absorção dos sistemas tiveram um desvio para o azul, exceto a segunda banda do sistema de Beta-Caroteno em Ácido Oléico que apresentou um desvio para o vermelho. Os resultados encontrados apresentam-se em excelente concordância com os valores experimentais encontrados na literatura. Todos os sistemas tiveram aumento no momento de dipolo elétrico devido às moléculas dos solventes serem moléculas polares. Os sistemas de ácidos graxos em álcoois apresentaram resultados muito semelhantes, ou seja, os ácidos graxos mencionados possuem comportamentos espectroscópicos semelhantes submetidos aos mesmos solventes. As simulações através do método seqüencial Monte Carlo / Mecânica Quântica estudadas demonstraram que a metodologia é eficaz para a obtenção das propriedades espectroscópicas dos líquidos moleculares analisados.
Resumo:
A inversão de momentos de fonte gravimétrica tridimensional é analisada em duas situações. Na primeira se admite conhecer apenas a anomalia. Na segunda se admite conhecer, além da anomalia, informação a priori sobre o corpo anômalo. Sem usar informação a priori, mostramos que é possível determinar univocamente todo momento, ou combinação linear de momentos, cujo núcleo polinomial seja função apenas das coordenadas Cartesianas que definem o plano de medida e que tenha Laplaciano nulo. Além disso, mostramos que nenhum momento cujo núcleo polinomial tenha Laplaciano não nulo pode ser determinado. Por outro lado, informação a priori é implicitamente introduzida se o método de inversão de momentos se baseia na aproximação da anomalia pela série truncada obtida de sua expansão em multipolos. Dado um centro de expansão qualquer, o truncamento da série impõe uma condição de regularização sobre as superfícies equipotenciais do corpo anômalo, que permite estimar univocamente os momentos e combinações lineares de momentos que são os coeficientes das funções-bases da expansão em multipolos. Assim, uma distribuição de massa equivalente à real é postulada, sendo o critério de equivalência especificado pela condição de ajuste entre os campos observado e calculado com a série truncada em momentos de uma ordem máxima pré-estabelecida. Os momentos da distribuição equivalente de massa foram identificados como a solução estacionária de um sistema de equações diferenciais lineares de 1a. ordem, para a qual se asseguram unicidade e estabilidade assintótica. Para a série retendo momentos até 2a. ordem, é implicitamente admitido que o corpo anômalo seja convexo e tenha volume finito, que ele esteja suficientemente distante do plano de medida e que a sua distribuição espacial de massa apresente três planos ortogonais de simetria. O método de inversão de momentos baseado na série truncada (IMT) é adaptado para o caso magnético. Para este caso, mostramos que, para assegurar unicidade e estabilidade assintótica, é suficiente pressupor, além da condição de regularização, a condição de que a magnetização total tenha direção e sentido constantes, embora desconhecidos. O método IMT baseado na série de 2a. ordem (IMT2) é aplicado a anomalias gravimétricas e magnéticas tridimensionais sintéticas. Mostramos que se a fonte satisfaz as condições exigidas, boas estimativas da sua massa ou vetor momento de dipolo anômalo total, da posição de seu centro de massa ou de momento de dipolo e das direções de seus três eixos principais são obtidas de maneira estável. O método IMT2 pode falhar parcialmente quando a fonte está próxima do plano de medida ou quando a anomalia tem efeitos localizados e fortes de um corpo pequeno e raso e se tenta estimar os parâmetros de um corpo grande e profundo. Definimos por falha parcial a situação em que algumas das estimativas obtidas podem não ser boas aproximações dos valores verdadeiros. Nas duas situações acima descritas, a profundidade do centro da fonte (maior) e as direções de seus eixos principais podem ser erroneamente estimadas, embora que a massa ou vetor momento de dipolo anômalo total e a projeção do centro desta fonte no plano de medida ainda sejam bem estimados. Se a direção de magnetização total não for constante, o método IMT2 pode fornecer estimativas erradas das direções dos eixos principais (mesmo se a fonte estiver distante do plano de medida), embora que os demais parâmetros sejam bem estimados. O método IMT2 pode falhar completamente se a fonte não tiver volume finito. Definimos por falha completa a situação em que qualquer estimativa obtida pode não ser boa aproximação do valor verdadeiro. O método IMT2 é aplicado a dados reais gravimétricos e magnéticos. No caso gravimétrico, utilizamos uma anomalia situada no estado da Bahia, que se supõe ser causada por um batólito de granito. Com base nos resultados, sugerimos que as massas graníticas geradoras desta anomalia tenham sido estiradas na direção NNW e adelgaçadas na direção vertical durante o evento compressivo que causou a orogênese do Sistema de Dobramentos do Espinhaço. Além disso, estimamos que a profundidade do centro de massa da fonte geradora é cerca de 20 km. No caso magnético, utilizamos a anomalia de um monte submarino situado no Golfo da Guiné. Com base nos resultados, estimamos que o paleopolo magnético do monte submarino tem latitude 50°48'S e longitude 74°54'E e sugerimos que não exista contraste de magnetização expressivo abaixo da base do monte submarino.
Resumo:
Localizar em subsuperfície a região que mais influencia nas medidas obtidas na superfície da Terra é um problema de grande relevância em qualquer área da Geofísica. Neste trabalho, é feito um estudo sobre a localização dessa região, denominada aqui zona principal, para métodos eletromagnéticos no domínio da freqüência, utilizando-se como fonte uma linha de corrente na superfície de um semi-espaço condutor. No modelo estudado, tem-se, no interior desse semi-espaço, uma heterogeneidade na forma de camada infinita, ou de prisma com seção reta quadrada e comprimento infinito, na direção da linha de corrente. A diferença entre a medida obtida sobre o semi-espaço contendo a heterogeneidade e aquela obtida sobre o semi-espaço homogêneo, depende, entre outros parâmetros, da localização da heterogeneidade em relação ao sistema transmissor-receptor. Portanto, mantidos constantes os demais parâmetros, existirá uma posição da heterogeneidade em que sua influência é máxima nas medidas obtidas. Como esta posição é dependente do contraste de condutividade, das dimensões da heterogeneidade e da freqüência da corrente no transmissor, fica caracterizada uma região e não apenas uma única posição em que a heterogeneidade produzirá a máxima influência nas medidas. Esta região foi denominada zona principal. Identificada a zona principal, torna-se possível localizar com precisão os corpos que, em subsuperfície, provocam as anomalias observadas. Trata-se geralmente de corpos condutores de interesse para algum fim determinado. A localização desses corpos na prospecção, além de facilitar a exploração, reduz os custos de produção. Para localizar a zona principal, foi definida uma função Detetabilidade (∆), capaz de medir a influência da heterogeneidade nas medidas. A função ∆ foi calculada para amplitude e fase das componentes tangencial (Hx) e normal (Hz) à superfície terrestre do campo magnético medido no receptor. Estudando os extremos da função ∆ sob variações de condutividade, tamanho e profundidade da heterogeneidade, em modelos unidimensionais e bidimensionais, foram obtidas as dimensões da zona principal, tanto lateralmente como em profundidade. Os campos eletromagnéticos em modelos unidimensionais foram obtidos de uma forma híbrida, resolvendo numericamente as integrais obtidas da formulação analítica. Para modelos bidimensionais, a solução foi obtida através da técnica de elementos finitos. Os valores máximos da função ∆, calculada para amplitude de Hx, mostraram-se os mais indicados para localizar a zona principal. A localização feita através desta grandeza apresentou-se mais estável do que através das demais, sob variação das propriedades físicas e dimensões geométricas, tanto dos modelos unidimensionais como dos bidimensionais. No caso da heterogeneidade condutora ser uma camada horizontal infinita (caso 1D), a profundidade do plano central dessa camada vem dada pela relação po = 0,17 δo, onde po é essa profundidade e δo o "skin depth" da onda plana (em um meio homogêneo de condutividade igual à do meio encaixante (σ1) e a freqüência dada pelo valor de w em que ocorre o máximo de ∆ calculada para a amplitude de Hx). No caso de uma heterogeneidade bidimensional (caso 2D), as coordenadas do eixo central da zona principal vem dadas por do = 0,77 r0 (sendo do a distância horizontal do eixo à fonte transmissora) e po = 0,36 δo (sendo po a profundidade do eixo central da zona principal), onde r0 é a distância transmissor-receptor e δo o "skin depth" da onda plana, nas mesmas condições já estipuladas no caso 1D. Conhecendo-se os valores de r0 e δo para os quais ocorre o máximo de ∆, calculado para a amplitude de Hx, pode-se determinar (do, po). Para localizar a zona principal (ou, equivalentemente, uma zona condutora anômala em subsuperfície), sugere-se um método que consiste em associar cada valor da função ∆ da amplitude de Hx a um ponto (d, p), gerado através das relações d = 0,77 r e p = 0,36 δ, para cada w, em todo o espectro de freqüências das medidas, em um dado conjunto de configurações transmissor-receptor. São, então, traçadas curvas de contorno com os isovalores de ∆ que vão convergir, na medida em que o valor de ∆ se aproxima do máximo, sobre a localização e as dimensões geométricas aproximadas da heterogeneidade (zona principal).
Resumo:
A identificação e descrição dos caracteres litológicos de uma formação são indispensáveis à avaliação de formações complexas. Com este objetivo, tem sido sistematicamente usada a combinação de ferramentas nucleares em poços não-revestidos. Os perfis resultantes podem ser considerados como a interação entre duas fases distintas: • Fase de transporte da radiação desde a fonte até um ou mais detectores, através da formação. • Fase de detecção, que consiste na coleção da radiação, sua transformação em pulsos de corrente e, finalmente, na distribuição espectral destes pulsos. Visto que a presença do detector não afeta fortemente o resultado do transporte da radiação, cada fase pode ser simulada independentemente uma da outra, o que permite introduzir um novo tipo de modelamento que desacopla as duas fases. Neste trabalho, a resposta final é simulada combinando soluções numéricas do transporte com uma biblioteca de funções resposta do detector, para diferentes energias incidentes e para cada arranjo específico de fontes e detectores. O transporte da radiação é calculado através do algoritmo de elementos finitos (FEM), na forma de fluxo escalar 2½-D, proveniente da solução numérica da aproximação de difusão para multigrupos da equação de transporte de Boltzmann, no espaço de fase, dita aproximação P1, onde a variável direção é expandida em termos dos polinômios ortogonais de Legendre. Isto determina a redução da dimensionalidade do problema, tornando-o mais compatível com o algoritmo FEM, onde o fluxo dependa exclusivamente da variável espacial e das propriedades físicas da formação. A função resposta do detector NaI(Tl) é obtida independentemente pelo método Monte Carlo (MC) em que a reconstrução da vida de uma partícula dentro do cristal cintilador é feita simulando, interação por interação, a posição, direção e energia das diferentes partículas, com a ajuda de números aleatórios aos quais estão associados leis de probabilidades adequadas. Os possíveis tipos de interação (Rayleigh, Efeito fotoelétrico, Compton e Produção de pares) são determinados similarmente. Completa-se a simulação quando as funções resposta do detector são convolvidas com o fluxo escalar, produzindo como resposta final, o espectro de altura de pulso do sistema modelado. Neste espectro serão selecionados conjuntos de canais denominados janelas de detecção. As taxas de contagens em cada janela apresentam dependências diferenciadas sobre a densidade eletrônica e a fitologia. Isto permite utilizar a combinação dessas janelas na determinação da densidade e do fator de absorção fotoelétrico das formações. De acordo com a metodologia desenvolvida, os perfis, tanto em modelos de camadas espessas quanto finas, puderam ser simulados. O desempenho do método foi testado em formações complexas, principalmente naquelas em que a presença de minerais de argila, feldspato e mica, produziram efeitos consideráveis capazes de perturbar a resposta final das ferramentas. Os resultados mostraram que as formações com densidade entre 1.8 e 4.0 g/cm3 e fatores de absorção fotoelétrico no intervalo de 1.5 a 5 barns/e-, tiveram seus caracteres físicos e litológicos perfeitamente identificados. As concentrações de Potássio, Urânio e Tório, puderam ser obtidas com a introdução de um novo sistema de calibração, capaz de corrigir os efeitos devidos à influência de altas variâncias e de correlações negativas, observadas principalmente no cálculo das concentrações em massa de Urânio e Potássio. Na simulação da resposta da sonda CNL, utilizando o algoritmo de regressão polinomial de Tittle, foi verificado que, devido à resolução vertical limitada por ela apresentada, as camadas com espessuras inferiores ao espaçamento fonte - detector mais distante tiveram os valores de porosidade aparente medidos erroneamente. Isto deve-se ao fato do algoritmo de Tittle aplicar-se exclusivamente a camadas espessas. Em virtude desse erro, foi desenvolvido um método que leva em conta um fator de contribuição determinado pela área relativa de cada camada dentro da zona de máxima informação. Assim, a porosidade de cada ponto em subsuperfície pôde ser determinada convolvendo estes fatores com os índices de porosidade locais, porém supondo cada camada suficientemente espessa a fim de adequar-se ao algoritmo de Tittle. Por fim, as limitações adicionais impostas pela presença de minerais perturbadores, foram resolvidas supondo a formação como que composta por um mineral base totalmente saturada com água, sendo os componentes restantes considerados perturbações sobre este caso base. Estes resultados permitem calcular perfis sintéticos de poço, que poderão ser utilizados em esquemas de inversão com o objetivo de obter uma avaliação quantitativa mais detalhada de formações complexas.
Resumo:
Inserido no convênio de cooperação firmado entre a Fundação Nacional de Saúde e a Universidade Federal do Pará, através do Departamento de Geofísica e do Curso de Pós-Graduação em Geofísica, este trabalho tem como objetivo o mapeamento geológico com a aplicação dos métodos eletromagnéticos VLF e HLEM, visando o estudo hidrogeológico do Município de São Domingos do Araguaia no Sudeste do Estado do Pará. Também, estudamos o desempenho quantitativo do método VLF, no que diz respeito a prospecção de água subterrânea. Primeiramente, analisamos a resposta VLF, através dos parâmetros da elipse de polarização (inclinação e elipsidade), de diferentes situações geológicas possíveis de serem encontradas no local de estudo e voltadas a hidrogeologia. Também, avaliamos a influência que os parâmetro físicos do modelo exercem na anomalia, utilizando para estas finalidades modelagem numérica por elemento finito. A análise quantitativa foi realizada através de ajuste, por tentativa e erro, com curvas teóricas obtidas da simulação de modelos idealizados na interpretação qualitativa, a qual fizemos com o auxilio da técnica de filtragem de Fraser e com perfís do método HLEM. Os resultados mostraram a existência de feições estruturais de "trends" N-S e NE-SW, que correlacionadas à geologia regional são falhas normais e de transferências, respectivamente. Com base nesses resultados, foram selecionados alguns locais com maiores probabilidades de sucesso na captação de água subterrânea através de poços.