2 resultados para Explosive events
em Universidade Federal do Pará
Resumo:
Sciaenids are fish which are normally abundant in tropical estuaries of the western Atlantic. Studies on the Caeté river estuary in the northern Brazilian state of Pará have revealed that in this area Sciaenidae is the dominant family, comprising almost 50% of all teleosts sampled. In this paper we present the results of the first phylogenetic study on South American estuarine sciaenids, during which we obtained mitochondrial gene 16S sequences from 15 species belonging to eight genera occurring in the Caeté estuary. Intergeneric nucleotide divergences varied from 5 to 15%, Lonchurus and Menticirrhus being the most divergent lineages. Nucleotide divergences were quite variable amongst species of the same genus, ranging from 1.2% (Stellifer microps x Stellifer naso) to 8.4% (Menticirrhus americanus x Menticirrhus littoralis). Cladograms based on maximum parsimony, minimum evolution and maximum likelihood depicted an explosive diversification pattern for the western Atlantic sciaenid assemblage. Our analysis further reveals a very close relationship between Bairdiella and Stellifer, a monophyletic clade which emerged during the more recent diversification events of the Sciaenidae family. The phylogenetic reconstruction suggests the need for a revision of the taxonomy and nomenclature of the Bairdiella/Stellifer group.
Resumo:
The neural retina is a highly complex tissue composed of excitatory and inhibitory neurons and glial cells. Glutamate, the main excitatory neurotransmitter, mediates information transfer from photoreceptors, bipolar cells, and ganglion cells, whereas interneurons, mainly amacrine and horizontal cells, use γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter. In this review we place an emphasis on glutamate and GABA transporters as highly regulated molecules that play fundamental roles in neurotransmitter clearance, neurotransmitter release, and oxidative stress. We pharmacologically characterized glutamate transporters in chicken retina cells and identified two glutamate transporters: one Na+-dependent transporter and one Na+-independent transporter. The Na+-dependent uptake system presented characteristics related to the high-affinity xAG- system (EAAT1), and the Na+-independent uptake system presented characteristics related to the xCG- system, which highly contributes to glutamate transport in the retina. Glutamate shares the xCG- system with another amino acid, L-cysteine, suggesting the possible involvement of glutathione. Both transporter proteins are present mainly in Müller glial cells. GABA transporters (GATs) mediate high-affinity GABA uptake from the extracellular space and terminate the synaptic action of GABA in the central nervous system. GABA transporters can be modulated by molecules that act on specific sites to promote transporter phosphorylation and dephosphorylation. In addition to a role in the clearance of GABA, GATs may also release GABA through a reverse transport mechanism. In the chicken retina, a GAT-1 blocker, but not GAT2/3 blocker, was shown to inhibit GABA uptake, suggesting that GABA release from retina cells is mainly mediated by a GAT-1-like transporter.