3 resultados para Evolutionary algorithm (EA)

em Universidade Federal do Pará


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta um método para encontrar um conjunto de pontos de operação, os quais são ótimos de Pareto com diversidade, para linhas digitais de assinante (DSL - digital subscriber line). Em diversos trabalhos encontrados na literatura, têm sido propostos algoritmos para otimização da transmissão de dados em linhas DSL, que fornecem como resultado apenas um ponto de operação para os modems. Esses trabalhos utilizam, em geral, algoritmos de balanceamento de espectro para resolver um problema de alocação de potência, o que difere da abordagem apresentada neste trabalho. O método proposto, chamado de diverseSB , utiliza um processo híbrido composto de um algoritmo evolucionário multiobjetivo (MOEA - multi-objective evolutionary algorithm), mais precisamente, um algoritmo genético com ordenamento por não-dominância (NSGA-II - Non-Dominated Sorting Genetic Algorithm II), e usando ainda, um algoritmo de balanceamento de espectro. Os resultados obtidos por simulações mostram que, para uma dada diversidade, o custo computacional para determinar os pontos de operação com diversidade usando o algoritmo diverseSB proposto é muito menor que métodos de busca de “força bruta”. No método proposto, o NSGA-II executa chamadas ao algoritmo de balanceamento de espectro adotado, por isso, diversos testes envolvendo o mesmo número de chamadas ao algoritmo foram realizadas com o método diverseSB proposto e o método de busca por força bruta, onde os resultados obtidos pelo método diverseSB proposto foram bem superiores do que os resultados do método de busca por força bruta. Por exemplo, o método de força bruta realizando 1600 chamadas ao algoritmo de balanceamento de espectro, obtém um conjunto de pontos de operação com diversidade semelhante ao do método diverseSB proposto com 535 chamadas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Há muitos anos, técnicas de Computação Evolucionária vem sendo aplicadas com sucesso na solução dos mais variados tipos de problemas de otimização. Na constante procura pelo ótimo global e por uma melhor exploração da superfície de busca, as escolhas para ajustar estes métodos podem ser exponencialmente complexas e requerem uma grande quantidade de intervenção humana. Estes modelos tradicionais darwinianos apóiam-se fortemente em aleatoriedade e escolhas heurísticas que se mantém fixas durante toda a execução, sem que acompanhem a variabilidade dos indivíduos e as eventuais mudanças necessárias. Dadas estas questões, o trabalho introduz a combinação de aspectos da Teoria do Design Inteligente a uma abordagem hibrida de algoritmo evolucionário, através da implementação de um agente inteligente o qual, utilizando lógica fuzzy, monitora e controla dinamicamente a população e seis parâmetros definidos de uma dada execução, ajustando-os para cada situação encontrada durante a busca. Na avaliação das proposições foi construído um protótipo sobre a implementação de um algoritmo genético para o problema do caixeiro viajante simétrico aplicado ao cenário de distância por estradas entre as capitais brasileiras, o que permitiu realizar 580 testes, simulações e comparações entre diferentes configurações apresentadas e resultados de outras técnicas. A intervenção inteligente entrega resultados que, com sucesso em muitos aspectos, superam as implementações tradicionais e abrem um vasto espaço para novas pesquisas e estudos nos aqui chamados: “Algoritmos Evolucionários Híbridos Auto-Adaptáveis”, ou mesmo, “Algoritmos Evolucionários Não-Darwinianos”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a hybrid methodology based on Graph-Coloring and Genetic Algorithm (GA) to solve the Wavelength Assignment (WA) problem in optical networks, impaired by physical layer effects. Our proposal was developed for a static scenario where the physical topology and traffic matrix are known a priori. First, we used fixed shortest-path routing to attend demand requests over the physical topology and the graph-coloring algorithm to minimize the number of necessary wavelengths. Then, we applied the genetic algorithm to solve WA. The GA finds the wavelength activation order on the wavelengths grid with the aim of reducing the Cross-Phase Modulation (XPM) effect; the variance due to the XPM was used as a function of fitness to evaluate the feasibility of the selected WA solution. Its performance is compared with the First-Fit algorithm in two different scenarios, and has shown a reduction in blocking probability up to 37.14% when considered both XPM and residual dispersion effects and up to 71.42% when only considered XPM effect. Moreover, it was possible to reduce by 57.14% the number of wavelengths.