3 resultados para Euler Zahl, Irreduzible symplektische Mannigfaltigkeit, Lagrangefaserung, Modulraum
em Universidade Federal do Pará
Resumo:
Neste tutorial apresentamos uma revisão da deconvolução de Euler que consiste de três partes. Na primeira parte, recordamos o papel da clássica formulação da deconvolução de Euler 2D e 3D como um método para localizar automaticamente fontes de campos potenciais anômalas e apontamos as dificuldades desta formulação: a presença de uma indesejável nuvem de soluções, o critério empírico usado para determinar o índice estrutural (um parâmetro relacionado com a natureza da fonte anômala), a exeqüibilidade da aplicação da deconvolução de Euler a levantamentos magnéticos terrestres, e a determinação do mergulho e do contraste de susceptibilidade magnética de contatos geológicos (ou o produto do contraste de susceptibilidade e a espessura quando aplicado a dique fino). Na segunda parte, apresentamos as recentes melhorias objetivando minimizar algumas dificuldades apresentadas na primeira parte deste tutorial. Entre estas melhorias incluem-se: i) a seleção das soluções essencialmente associadas com observações apresentando alta razão sinal-ruído; ii) o uso da correlação entre a estimativa do nível de base da anomalia e a própria anomalia observada ou a combinação da deconvolução de Euler com o sinal analítico para determinação do índice estrutural; iii) a combinação dos resultados de (i) e (ii), permitindo estimar o índice estrutural independentemente do número de soluções; desta forma, um menor número de observações (tal como em levantamentos terrestres) pode ser usado; iv) a introdução de equações adicionais independentes da equação de Euler que permitem estimar o mergulho e o contraste de susceptibilidade das fontes magnéticas 2D. Na terceira parte apresentaremos um prognóstico sobre futuros desenvolvimentos a curto e médio prazo envolvendo a deconvolução de Euler. As principais perspectivas são: i) novos ataques aos problemas selecionados na segunda parte deste tutorial; ii) desenvolvimento de métodos que permitam considerar interferências de fontes localizadas ao lado ou acima da fonte principal, e iii) uso das estimativas de localização da fonte anômala produzidas pela deconvolução de Euler como vínculos em métodos de inversão para obter a delineação das fontes em um ambiente computacional amigável.
Resumo:
ABSTRACT: We present here a methodology for the rapid interpretation of aeromagnetic data in three dimensions. An estimation of the x, y and z coordinates of prismatic elements is obtained through the application of "Euler's Homogeneous equation" to the data. In this application, it is necessary to have only the total magnetic field and its derivatives. These components can be measured or calculated from the total field data. In the use of Euler's Homogeneous equation, the structural index, the coordinates of the corners of the prism and the depth to the top of the prism are unknown vectors. Inversion of the data by classical least-squares methods renders the problem ill-conditioned. However, the inverse problem can be stabilized by the introduction of both a priori information within the parameter vector together with a weighting matrix. The algorithm was tested with synthetic and real data in a low magnetic latitude region and the results were satisfactory. The applicability of the theorem and its ambiguity caused by the lack of information about the direction of total magnetization, inherent in all automatic methods, is also discussed. As an application, an area within the Solimões basin was chosen to test the method. Since 1977, the Solimões basin has become a center of exploration activity, motivated by the first discovery of gas bearing sandstones within the Monte Alegre formation. Since then, seismic investigations and drilling have been carried on in the region. A knowledge of basement structures is of great importance in the location of oil traps and understanding the tectonic history of this region. Through the application of this method a preliminary estimate of the areal distribution and depth of interbasement and sedimentary magnetic sources was obtained.
Resumo:
O presente trabalho consiste na formulação de uma metodologia para interpretação automática de dados de campo magnético. Desta forma, a sua utilização tornará possível a determinação das fronteiras e magnetização de cada corpo. Na base desta metodologia foram utilizadas as características de variações abruptas de magnetização dos corpos. Estas variações laterais abruptas serão representadas por polinômios descontínuos conhecidos como polinômios de Walsh. Neste trabalho, muitos conceitos novos foram desenvolvidos na aplicação dos polinômios de Walsh para resolver problemas de inversão de dados aeromagnéticos. Dentre os novos aspectos considerados, podemos citar. (i) - O desenvolvimento de um algoritmo ótimo para gerar um jôgo dos polinômios "quase-ortogonais" baseados na distribuição de magnetização de Walsh. (ii) - O uso da metodologia damped least squares para estabilizar a solução inversa. (iii) - Uma investigação dos problemas da não-invariância, inerentes quando se usa os polinômios de Walsh. (iv) - Uma investigação da escolha da ordem dos polinômios, tomando-se em conta as limitações de resolução e o comportamento dos autovalores. Utilizando estas características dos corpos magnetizados é possível formular o problema direto, ou seja, a magnetização dos corpos obedece a distribuição de Walsh. É também possível formular o problema inverso, na qual a magnetização geradora do campo observado obedece a série de Walsh. Antes da utilização do método é necessária uma primeira estimativa da localização das fontes magnéticas. Foi escolhida uma metodologia desenvolvida por LOURES (1991), que tem como base a equação homogênea de Euler e cujas exigências necessárias à sua utilização é o conhecimento do campo magnético e suas derivadas. Para testar a metodologia com dados reais foi escolhida uma região localizada na bacia sedimentar do Alto Amazonas. Os dados foram obtidos a partir do levantamento aeromagnético realizado pela PETROBRÁS.