3 resultados para Engines.

em Universidade Federal do Pará


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simulação numérica do escoamento de ar em ambientes internos é na atualidade o método mais apropriado para análise de conforto térmico em ambientes internos. O escoamento de ar nesses ambientes configura-se como um escoamento complexo, pois, em regra geral, é uma combinação de escoamentos cisalhantes livres (jatos) e cisalhantes de parede, além disso, esses escoamentos são governados por forças de inércia e forças de empuxo, caracterizando-o como de convecção mista. A combinação desses mecanismos cria um escoamento com características complexas, como zonas de recirculação, vórtices, descolamento e recolamento de camada-limite dentre outras. Portanto, a precisão da solução estará diretamente ligada, principalmente, na habilidade do modelo de turbulência adotado de reproduzir as características turbulentas do escoamento de ar e da transferência térmica. O objetivo principal do presente trabalho foi a simulação computacional do ambiente térmico interno do galpão que abriga os geradores e motores Wärtzilä da Usina Termelétrica Santana no estado do Amapá. A formulação matemática baseada na solução das equações gerais de conservação inclui uma análise dos principais modelos de turbulência aplicados ao escoamento de ar em ambientes internos, assim como os processos de transferência de calor associados. Na modelagem numérica o método de volumes finitos é usado na discretização das equações de conservação, através do código comercial Fluent-Airpak, que foi usado nas simulações computacionais para a análise dos campos de velocidade e temperatura do ar. A utilização correta do programa computacional foi testada e validada para o problema através da simulação precisa de casos retirados da literatura. Os resultados numéricos foram comparados a dados obtidos de medições experimentais realizados no galpão e apresentou boa concordância, considerando a complexidade do problema simulado, o objetivo da simulação em face da diminuição da temperatura no interior do galpão e, também, em função das limitações encontradas quando da tomada das medições experimentais. Além disso, foram feitas simulações de estratégias de melhoria do ambiente térmico da Usina, baseadas na realidade levantada e nos resultados da simulação numérica. Finalmente, foram realizadas simulações do protótipo de solução proposto para a diminuição da temperatura interna do galpão o que possibilitará um aumento, na faixa de 20 a 30%, do tempo de permanência no interior do galpão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A experiência internacional indica a existência de cinco alavancas principais comumente relacionadas à expansão do consumo de gás natural: a) disponibilidade de reservas de gás natural; b) restrições à oferta de outros energéticos (especialmente para a geração de eletricidade); c) preocupação com o meio ambiente em uma legislação ambiental cada dia mais rigorosa; d) liberalização de empresas privadas na distribuição e comercialização de gás natural, atraindo investimentos; e) liberalização da indústria, atraindo investimentos privados, como opção. Dentro desse cenário, as obras de construção do gasoduto Coari (Base de Extração Urucu)-Manaus, com cerca de 670 quilômetros de extensão total, ficarão prontas em abril de 2008 conforme previsão da Petrobrás divulgada no dia 21/05/2007, o qual transportará 4,7 milhões de metros cúbicos por dia de gás natural na primeira fase de operação. O investimento total previsto é de R$2,4 bilhões. O gás natural substituirá o diesel e o óleo combustível usados principalmente na produção de grande parte da energia elétrica consumida no Estado do Amazonas. Será usado também nos processos industrial e comercial, bem como para abastecer veículos automotores (automóveis, pickups, caminhões leves, ônibus) com segurança. Essa última aplicação incentivou por excelência esta dissertação, fazendo uma análise técnico-econômica da substituição parcial do combustível diesel pelo gás natural em motores marítimos na região Amazônica, pois as embarcações são veículos que singram os rios da Amazônia, usados no transporte de carga e passageiros. Demonstra primeiramente que é possível tecnicamente a conversão dos motores diesel para consumirem diesel misturado com gás natural às taxas de substituição de diesel por gás natural de 5% a 90%, usando tecnologias já disponíveis no mercado brasileiro, sob a ótica de desempenho energético e ambiental. Posteriormente apresenta uma análise econômica da conversão, levando em consideração os reservatórios para gás natural comprimido - GNC ofertados no mercado nacional e os kits de conversão, em que ficam demonstradas: a) a viabilidade econômica do empreendimento, se desprezados os pesos e os volumes dos reservatórios de gás natural comprimido, principalmente os pesos; b) a inviabilidade econômica, considerando o transporte dos reservatórios nas embarcações como fretes que deixaram de gerar receitas pelos volumes e pesos ocupados nelas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gaseificação é uma conversão termoquímica da biomassa em gás combustível, que pode ser usado como combustível em motores de combustão interna ou como gás de síntese para a indústria química. Para checar o desempenho de um gaseificador temos de quantificar a energia contida no gás produzido e a quantidade de carbono convertido por meio dos cálculos de eficiência energética e de conversão de carbono através dos dados obtidos experimentalmente. A eficiência energética é uma relação entre os fluxos de gás e biomassa e de suas respectivas quantidades de energia, no mesmo sentido, a conversão de carbono é a quantidade de compostos carbonáceos presentes no gás convertido a partir da quantidade de carbono presente na composição da biomassa. O presente documento avalia a eficiência energética e de carbono na conversão de um protótipo de um gaseificador indiano do tipo downdraft produzido por uma empresa local (Floragás). Os parâmetros nominais do gaseificador são: capacidade de produção de gás de 45 kWt, consumo de biomassa (caroço de açaí) de 15 kg/h. As dimensões do gaseificador são: DI 150 mm e altura de 2000 mm). A eficiência energética e a taxa de conversão de carbono foram quantificados, a queda de pressão devido ao leito do reator e a temperatura dos gases também foram medidos na saída do reator e também, a concentração de alcatrão, partículas e gases não condensáveis (CO, CO2, CH4, SO2, N2 e NOx) nos gases de combustão após a sistema de limpeza.