1 resultado para ECG Online Prediction

em Universidade Federal do Pará


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monitorização ambulatorial do eletrocardiograma (ECG) permite seguir as atividades cotidianas do paciente durante períodos de 24 horas (ou ainda maiores) possibilitando o estudo de casos que pudessem ter episódios arrítmicos fatais. Entretanto, o maior desafio tecnológico que este tipo de monitorização enfrenta é a perda de informação pela presença de ruídos e artefatos quando o paciente se move. A análise do intervalo QT de despolarização e repolarização ventricular do eletrocardiograma superficial é uma técnica não invasiva com um grande valor para a diagnose e prognósticos de cardiopatias e neuropatias, assim como para a predição da morte cardíaca súbita. A análise do desvio padrão do intervalo QT proporciona informação sobre a dispersão (temporal ou espacial) da repolarização ventricular, entretanto a influencia do ruído provoca erros na detecção do final da onda T que são apreciáveis devido ao fato dos valores pequenos do desvio padrão do QT tanto para sujeitos patológicos e quanto para os sãos. O objetivo geral desta tese é melhorar os métodos de processamento do sinal de ECG ambulatorial usando inteligência computacional, especificamente os métodos relacionados com a detecção do final da onda T, e os de reconhecimento morfológico de batimentos que invalidam a análise da variabilidade do intervalo QT. É proposto e validado (em termos de exatidão e precisão) um novo método e algoritmo para estimar o final da onda T baseado no calculo de áreas de trapézios, empregando sinais da base de dados QT da Physionet. O desempenho do método proposto foi testado e comparado com um dos métodos mais usados para detectar o final da onda T: o método baseado no limiar na primeira derivada. O método de inteligência computacional sugerido combina a extração de características usando o método de análise de componentes principais não lineares e a rede neural de tipo perceptron multicamada. O método de áreas de trapézios teve um bom desempenho em condições ruidosas e não depende de nenhum limiar empírico, sendo adequado para situações com níveis de elevados de ruído de banda larga. O método de reconhecimento morfológico de batimentos foi avaliado com sinais ambulatoriais com e sem artefatos pertencentes a bases de dados de prestigio internacional, e mostrou um bom desempenho.