3 resultados para Deuteric fluids
em Universidade Federal do Pará
Resumo:
In this work the turbulent flow of the Non-Newtonian Carreau-Yasuda fluid will be studied. A skin friction equation for the turbulent flow of Carreau-Yasuda fluids will be derived assuming a logarithmic behavior of the turbulent mean velocity for the near wall flow out of the viscous sub layer. An alternative near wall characteristic length scale which takes into account the effects of the relaxation time will be introduced. The characteristic length will be obtained through the analysis of viscous region near the wall. The results compared with experimental data obtained with Tylose (methyl hydroxil cellulose) solutions showing good agreement. The relations between scales integral and dissipative obtained for length, time, velocity, kinetic energy, and vorticity will be derived for this type of fluid. When the power law index approach to unity the relations reduces to Newtonian case.
Resumo:
ABSTRACT: The thermal entry region in laminar forced convection of Herschel-Bulkley fluids is solved analytically through the integral transform technique, for both circular and parallel-plates ducts, which are maintained at a prescribed wall temperature or at a prescribed wall heat flux. The local Nusselt numbers are obtained with high accuracy in both developing and fully-developed thermal regions, and critical comparisons with previously reported numerical results are performed.
Resumo:
ABSTRACT: Related momentum and energy equations describing the heat and fluid flow of Herschel-Bulkley fluids within concentric annular ducts are analytically solved using the classical integral transform technique, which permits accurate determination of parameters of practical interest in engineering such as friction factors and Nusselt numbers for the duct length. In analyzing the problem, thermally developing flow is assumed and the duct walls are subjected to boundary conditions of first kind. Results are computed for the velocity and temperature fields as well as for the parameters cited above with different power-law indices, yield numbers and aspect ratios. Comparisons are also made with previous work available in the literature, providing direct validation of the results and showing that they are consistent.