5 resultados para Dendritic remodeling

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed a quantitative analysis of M and P cell mosaics of the common-marmoset retina. Ganglion cells were labeled retrogradely from optic nerve deposits of Biocytin. The labeling was visualized using horseradish peroxidase (HRP) histochemistry and 3-3'diaminobenzidine as chromogen. M and P cells were morphologically similar to those found in Old- and New-World primates. Measurements were performed on well-stained cells from 4 retinas of different animals. We analyzed separate mosaics for inner and outer M and P cells at increasing distances from the fovea (2.5-9 mm of eccentricity) to estimate cell density, proportion, and dendritic coverage. M cell density decreased towards the retinal periphery in all quadrants. M cell density was higher in the nasal quadrant than in other retinal regions at similar eccentricities, reaching about 740 cells/mm2 at 2.5 mm of temporal eccentricity, and representing 8-14% of all ganglion cells. P cell density increased from peripheral to more central regions, reaching about 5540 cells/mm2 at 2.5 mm of temporal eccentricity. P cells represented a smaller proportion of all ganglion cells in the nasal quadrant than in other quadrants, and their numbers increased towards central retinal regions. The M cell coverage factor ranged from 5 to 12 and the P cell coverage factor ranged from 1 to 3 in the nasal quadrant and from 5 to 12 in the other quadrants. These results show that central and peripheral retinal regions differ in terms of cell class proportions and dendritic coverage, and their properties do not result from simply scaling down cell density. Therefore, differences in functional properties between central and peripheral vision should take these distinct regional retinal characteristics into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37) on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively). Three cells (4.5%) were bistratified, having thick dendrites, and the others (95.5%) were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40%) and 2 groups with inner (50-100%) stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O principal objetivo desse trabalho é investigar a influência dos parâmetros térmicos velocidade de solidificação (VL) e taxa de resfriamento (TR), nos espaçamentos dendríticos primários (λ1) da liga hipoeutética Al-7%Si, durante a solidificação direcional horizontal, em regime transiente. Os valores de λ1 foram medidos ao longo do comprimento do lingote e correlacionados com esses parâmetros. A variação dos espaçamentos dendríticos estudados é expressa por meio de funções na forma de potência de VLe TRdadas, respectivamente, por λ1= 55(VL)-1.1e λ1= 212 (TR)-0.55. Um estudo comparativo é realizado entre os resultados encontrados nesse trabalho e aqueles obtidos para a mesma liga quando solidificada direcionalmente nos sistemas verticais ascendente e descendente, sob as mesmas condições assumidas. Finalmente, os resultados experimentais obtidos são comparados com valores fornecidos por alguns modelos teóricos propostos na literatura para analisar espaçamentos dendríticos primários.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As ligas Al-Sn são amplamente utilizados em aplicações tribológicas. Nesse estudo, análises térmica, microestrutural e dureza (HV) foram realizadas ao longo de um lingote da liga Al-5,5%Sn, obtido por solidificação direcional horizontal transitória. Os principais parâmetros analisados incluem a velocidade de deslocamento da isoterma liquidus (VL) e a taxa de resfriamento (TR). Esses parâmetros térmicos desempenham um papel fundamental na formação da microestrutura. A microestrutura dendrítica foi caracterizada através dos espaçamentos dentríticos primários (λ1), os quais foram determinados, experimentalmente, e correlacionados com VL, e TR. O comportamento apresentado pela liga Al- 5,5% Sn, durante a solidificação,é semelhante ao de outras ligas de alumínio, isto é, observa-se rede dendrítica mais grosseira com a diminuição da taxa de resfriamento, indicando que a imiscibilidade entre o alumínio e estanho não tem um efeito significativo sobre o relação entre o espaçamento dendrítico primário e taxa de resfriamento. A dependência da microdureza em VL, TR e no λ1 foi também analisada. Verificaram-se menores valores de HV para maiores TR. Por outro lado, os valores HV aumentam com valores crescentes de λ1.