3 resultados para Conceptual fields theory

em Universidade Federal do Pará


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese aborda a discussão a respeito do raciocínio matemático manifestado no saber/ fazer dos artesãos ceramistas do Distrito Municipal de Icoaraci (Belém/ PA), visando o entendimento cognitivo e cultural desta prática, para abstrair contribuições à educação matemática – área de conhecimento na qual se inscreve, especialmente no âmbito da educação matemática. Trabalhado essa última, a tese analisa a realidade dos sujeitos mediante a Teoria dos Campos Conceituais, do educador matemático Gérard Vergnaud, que desenvolve estudos na linha construtivista, do psicólogo da educação Jean Piaget, possibilitando abordar na prática cotidiana do artesão, seus Campos Conceituais, a possibilidade ou não da existência de teoremas e conceitos-em-ato, fato esse que irá constatar ou não a essência ou „matematicidade‟ dos estudos educacionais matemáticos trabalhados por etnomatemáticos, pedagogos, especialistas de modelagem matemática, sociólogos e arqueólogos matemáticos. A epistemologia da educação matemática, disciplina filosófica, surge norteando esse entendimento sobre o raciocínio matemático, através da matemática do sensível, que acha origens na antiguidade grega, através dos ideários pitagórico, platônico e aristotélico, estendendo essa visão à matemática do mundo presente. Assim, a tese procura explicitar a manifestação de um raciocínio matemático por parte do artesão, que no seu fazer predominantemente não conhece e/ ou não utiliza a matemática acadêmica ou formal, como comprovado em outros estudos. Essa presença ou não de entendimentos matemáticos será constatada através de abordagem etnográfica e qualitativa, sob o enfoque fenomenológico, utilizando técnicas de observação, anotações de campo, inventário cultural e entrevistas, no intuito de analisar as representações existentes em suas obras e o fazer/ pensar manifestados nessa produção.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O presente trabalho trata de uma experiência piloto de uma sequencia didática, envolvendo fazeres da arte que comungam os conceitos artísticos e matemáticos de semelhança com alunos de uma turma de 8ª série do ensino fundamental com objetivo de desenvolver um sentimento matemático de semelhança por meio do fazer artístico, motivado na proposta Triangular em Arte, na Matemática Humanística e nos pressupostos da teoria dos Campos Conceituais de Vergnaud. O estudo revela que a matemática considerada no domínio inteligível razão; e a arte no domínio sensível emoção, mostram-se, nesse caso, inseparáveis para a construção do sentimento de semelhança matemático como desejado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desenvolvemos a quantização do campo vetorial não massivo no espaço-tempo de Schwarzschild, e calculamos a potência irradiada por uma carga elétrica em órbita circular em torno de um objeto com massa M em ambos os espaços-tempos. Em Minkowski é encontrada a expressão analítica da potência irradiada utilizando teoria quântica de campos e assumindo gravitação newtoniana. O resultado obtido é equivalente ao resultado clássico, dado que o cálculo é realizado em nível de árvore. Dadas as dificuldades matemáticas encontradas ao se tentar obter soluções expressas em termos de funções especiais conhecidas, em Schwarzschild o problema é abordado de duas formas: solução analítica no limite de baixas freqüências, e resolução numérica. O primeiro caso serviu como cheque de consistência para o método numérico. Em Schwarzschild, o cálculo também é realizado utilizando teoria quântica de campos em nível de árvore, e a expressão da potência é encontrada analiticamente na aproximação de baixas freqüências e através de métodos numérico. Após a comparação dos resultados, concluímos que, para uma mesma velocidade angular de rotação da carga (medida por observadores estatísticos assintóticos), a potência irradiada em Minkowski é maior que a potência irradiada em Schwarzschild.