4 resultados para Chick Embryo
em Universidade Federal do Pará
Resumo:
O ácido γ-aminobutírico (GABA) e o glutamato são, respectivamente, os principais neurotransmissores inibitório e excitatório no Sistema Nervoso Central (SNC) e são fundamentais para o processamento visual. Estudos revelam que o glutamato induz liberação de GABA na retina. Trabalhos prévios também apontam que compostos tióis regulam a liberação de GABA, mas ainda não são totalmente esclarecidos os efeitos de tióis (-SH) sobre os níveis endógenos deste neurotransmissor na retina. Neste intermédio, a glutationa (GSH) além de ser o mais importante dos compostos tióis, vem demonstrando exercer um papel neuromodulador na liberação de neurotransmissores. Desta forma, o objetivo deste trabalho foi avaliar um possível efeito modulador de GSH sobre a liberação de GABA mediada por glutamato em retinas de embrião de galinha. Para isso, utilizamos como modelo experimental tecido retiniano íntegro de embrião de galinha, com sete ou oito dias de desenvolvimento. Nos ensaios de liberação de GABA, as retinas foram tratadas com GSH (100 e 500 μM); glutamato (50 e 500 μM) e Butionina Sulfoximina (BSO), inibidor da síntese de glutationa, (50 μM) por 15 minutos, e os níveis de GABA liberado para o meio extracelular foram quantificados por Cromatografia Líquida de Alta Eficácia (CLAE). Para experimentos de liberação de compostos tióis (–SH), as retinas foram incubadas com glutamato (100 μM) com ou sem Na+ por 15 minutos, e os seus níveis extracelulares foram determinados pela reação com DTNB e quantificados por espectrofotometria (412 nm). Os resultados revelam que o glutamato, assim como GSH, liberam GABA. Nossos dados também demonstram que BSO atenua a liberação de GABA promovida por glutamato. Além disso, demonstramos que glutamato induz liberação de compostos tióis independentemente de sódio. Sendo assim, é sabido que glutamato é capaz de liberar GABA e tióis; dentre estes, GSH é o mais abundante e responsável por também liberar GABA. Sabe-se também que uma vez inibida a síntese de GSH por BSO, a liberação de GABA induzida por glutamato é atenuada. Então, se sugere uma possível modulação de GSH na liberação de GABA induzida por glutamato, em retinas íntegras de embrião de galinha.
Resumo:
O acidente vascular cerebral isquêmico (AVCi) causa danos celulares por provocar intensa excitotoxicidade e estresse oxidativo após privação de oxigênio e glicose para uma região do encéfalo. Neste trabalho, investigamos o potencial neuroprotetor da planta amazônica Brosimum acutifolium que é rica em flavanas como a 4',7-diidroxi-8-(3,3-dimetilalil)flavana (brosimina b, aqui abreviada como Bb) que apresenta elevado potencial antioxidante. Utilizamos cultura de células retinianas de embrião de galinha submetidas a hipóxia experimental, por privação de oxigênio e glicose, para avaliarmos o potencial antioxidante da Bb através da análise do sequestro do radical 2,2-difenil-1-picril-hidrazil (DPPH). Além disso, avaliamos a viabilidade celular (VC) e o perfil oxidativo e antioxidativo após 3, 6 e 24 horas de hipóxia, pela produção de oxigênio reativo (O2-) e atividade antioxidante endógena pela enzima catalase, respectivamente. Nossos resultados demonstram que nosso modelo experimental de hipóxia in vitro provoca redução tempo-dependente da VC, acompanhada por intenso estrese oxidativo, devido à excessiva produção de oxigênio reativo (O2-). O tratamento com Bb (10μM) protegeu significativamente a viabilidade celular durante 3 e 6 h de hipóxia experimental em células retiniana cultivadas in vitro, além de favorecer o aumento da atividade da enzima catalase em todos os tempos testados. Desta forma, concluímos que a Bb possui ação antioxidante e neuroprotetor por contribuir na defesa contra o estresse oxidativo induzido em condições de hipóxia, tornando-se como uma droga com potencial uso em tratamentos em casos de AVCi in vivo.
Resumo:
The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H3]-arginine to L-[H3]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system
Resumo:
The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5), while the Bmax value for 125I-a-bungarotoxin was reduced. Despite the presence of a8-like immunoreactivity at DIV4, functional responses mediated by a-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM) was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM) blocked the response to acetylcholine (3.0 nM-2.0 µM) only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the a-bungarotoxin-sensitive response at DIV5. Therefore, a-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an a-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by a-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express a-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.