4 resultados para Butt joints, Interface, Contact, Bolt tightness, 3D finite element modelling
em Universidade Federal do Pará
Resumo:
Marine Controlled Source Electromagnetic - mCSEM é um método geofísico eletromagnético que nos últimos dez anos vem sendo usado na prospecção de hidrocarbonetos com bastante êxito. Este método consiste em um dipolo elétrico horizontal (DEH) localizado um pouco acima do assoalho marinho, operando em baixa frequência (0,1-1,0 Hz) e receptores regularmente distribuídos no fundo do mar que captam os campos eletromagnéticos provenientes da difusão de energia gerada pelo dipolo transmissor. Neste trabalho vamos apresentar o problema direto do método mCSEM 3D, propondo soluções numéricas, através do método dos elementos finitos tridimensionais, para modelos geoelétricos mCSEM 3D. Para fins de análise de coerência, os resultados obtidos são comparados com soluções disponíveis na literatura. Em seguida, apresentaremos a inversão de um de seus modelos segundo uma proposta de metodologia de inversão juntamente com a proposta de solução direta para o mCSEM 3D, acima mencionada, realizando assim a inversão de um modelo geoelétrico do mCSEM 3D para duas frequências.
Resumo:
A implementação convencional do método de migração por diferenças finitas 3D, usa a técnica de splitting inline e crossline para melhorar a eficiência computacional deste algoritmo. Esta abordagem torna o algoritmo eficiente computacionalmente, porém cria anisotropia numérica. Esta anisotropia numérica por sua vez, pode levar a falsos posicionamentos de refletores inclinados, especialmente refletores com grandes ângulos de mergulho. Neste trabalho, como objetivo de evitar o surgimento da anisotropia numérica, implementamos o operador de extrapolação do campo de onda para baixo sem usar a técnica splitting inline e crossline no domínio frequência-espaço via método de diferenças finitas implícito, usando a aproximação de Padé complexa. Comparamos a performance do algoritmo iterativo Bi-gradiente conjugado estabilizado (Bi-CGSTAB) com o multifrontal massively parallel solver (MUMPS) para resolver o sistema linear oriundo do método de migração por diferenças finitas. Verifica-se que usando a expansão de Padé complexa ao invés da expansão de Padé real, o algoritmo iterativo Bi-CGSTAB fica mais eficientes computacionalmente, ou seja, a expansão de Padé complexa atua como um precondicionador para este algoritmo iterativo. Como consequência, o algoritmo iterativo Bi-CGSTAB é bem mais eficiente computacionalmente que o MUMPS para resolver o sistema linear quando usado apenas um termo da expansão de Padé complexa. Para aproximações de grandes ângulos, métodos diretos são necessários. Para validar e avaliar as propriedades desses algoritmos de migração, usamos o modelo de sal SEG/EAGE para calcular a sua resposta ao impulso.
Resumo:
Os efeitos Delaware e Groningen são dois tipos de anomalia que afetam ferramentas de eletrodos para perfilagem de resistividade. Ambos os efeitos ocorrem quando há uma camada muito resistiva, como anidrita ou halita, acima do(s) reservatório(s), produzindo um gradiente de resistividade muito similar ao produzido por um contato óleo-água. Os erros de interpretação produzidos têm ocasionado prejuízos consideráveis à indústria de petróleo. A PETROBRÁS, em particular, tem enfrentado problemas ocasionados pelo efeito Groningen sobre perfis obtidos em bacias paleozóicas da região norte do Brasil. Neste trabalho adaptamos, com avanços, uma metodologia desenvolvida por LOVELL (1990), baseada na equação de Helmholtz para HΦ, para modelagem dos efeitos Delaware e Groningen. Solucionamos esta equação por elementos finitos triangulares e retangulares. O sistema linear gerado pelo método de elementos finitos é resolvido por gradiente bi-conjugado pré-condicionado, sendo este pré-condicionador obtido por decomposição LU (Low Up) da matriz de stiffness. As voltagens são calculadas por um algoritmo, mais preciso, recentemente desenvolvido. Os perfis são gerados por um novo algoritmo envolvendo uma sucessiva troca de resistividade de subdomínios. Este procedimento permite obter cada nova matriz de stiffness a partir da anterior pelo cálculo, muito mais rápido, da variação dessa matriz. Este método permite ainda, acelerar a solução iterativa pelo uso da solução na posição anterior da ferramenta. Finalmente geramos perfis sintéticos afetados por cada um dos efeitos para um modelo da ferramenta Dual Laterolog.
Resumo:
Um dos métodos clássicos da geofísica de exploração é o Método de Eletrorresistividade, estabelecido há um século pelos irmãos Schlumberger e desde então amplamente empregado em prospecção mineral, estudos ambientais e hidrogeologia e em pesquisa de fontes geotermais. Conceitualmente o método consiste de injeção de corrente elétrica na subsuperfície e de medida de diferença de potencial elétrico, resultante da interação da corrente com o meio. As localizações dessas fontes e receptores são determinadas pelo arranjo escolhido para o levantamento. Após o processamento, obtém-se pseudo-seções de resistividade aparente que indicam a distribuição de condutividade em subsuperfície. Devido à simplicidade dos fundamentos físicos de sua formulação, o método apresenta fácil implementação computacional quando comparado aos métodos eletromagnéticos de fonte controlada. Na literatura há inúmeros trabalhos de modelagem computacional, onde se calcula a resposta para problemas 2-D e 3-D. Nestes trabalhos, as pseudo-seções são obtidas a partir do cálculo do potencial elétrico total. Neste trabalho, apresentaremos a resposta da modelagem de eletroresistividade 2-D com o arranjo dipolo-dipolo, obtida a partir do potencial elétrico secundário. A solução é calculada através do método de elementos finitos usando malhas não estruturadas. Para efeito de validação, os resultados são comparados com a resposta 2-D obtida a partir dos potencias totais.