1 resultado para Bolsa de valores - Índices
em Universidade Federal do Pará
Resumo:
Neste trabalho, a decomposição em valores singulares (DVS) de uma matriz A, n x m, que representa a anomalia magnética, é vista como um método de filtragem bidimensional de coerência que separa informações correlacionáveis e não correlacionáveis contidas na matriz de dados magnéticos A. O filtro DVS é definido através da expansão da matriz A em autoimagens e valores singulares. Cada autoimagem é dada pelo produto escalar dos vetores de base, autovetores, associados aos problemas de autovalor e autovetor das matrizes de covariância ATA e AAT. Este método de filtragem se baseia no fato de que as autoimagens associadas a grandes valores singulares concentram a maior parte da informação correlacionável presente nos dados, enquanto que a parte não correlacionada, presumidamente constituída de ruídos causados por fontes magnéticas externas, ruídos introduzidos pelo processo de medida, estão concentrados nas autoimagens restantes. Utilizamos este método em diferentes exemplos de dados magnéticos sintéticos. Posteriormente, o método foi aplicado a dados do aerolevantamento feito pela PETROBRÁS no Projeto Carauari-Norte (Bacia do Solimões), para analisarmos a potencialidade deste na identificação, eliminação ou atenuação de ruídos e como um possível método de realçar feições particulares da anomalia geradas por fontes profundas e rasas. Este trabalho apresenta também a possibilidade de introduzir um deslocamento estático ou dinâmico nos perfis magnéticos, com a finalidade de aumentar a correlação (coerência) entre eles, permitindo assim concentrar o máximo possível do sinal correlacionável nas poucas primeiras autoimagens. Outro aspecto muito importante desta expansão da matriz de dados em autoimagens e valores singulares foi o de mostrar, sob o ponto de vista computacional, que a armazenagem dos dados contidos na matriz, que exige uma quantidade n x m de endereços de memória, pode ser diminuída consideravelmente utilizando p autoimagens. Assim o número de endereços de memória cai para p x (n + m + 1), sem alterar a anomalia, na reprodução praticamente perfeita. Dessa forma, concluímos que uma escolha apropriada do número e dos índices das autoimagens usadas na decomposição mostra potencialidade do método no processamento de dados magnéticos.