8 resultados para Backtracking search optimization algorithm
em Universidade Federal do Pará
Resumo:
O objetivo deste trabalho é a otimização da largura de banda de antenas linear e planar para aplicações em sistemas de banda larga. Nesse sentido, foi feito um estudo das técnicas de análise, aumento da largura de banda e otimização adequadas para o problema em questão. Como técnica de análise, foi utilizado o método dos momentos, o qual está apresentado no capítulo II. Para aumentar a largura de banda, foram utilizadas as técnicas de colocação de elementos parasitas e construção de fendas no radiador, descritos sucintamente no capítulo III. Como algoritmo de otimização, foi utilizado o algoritmo genético, descrito sucintamente no capítulo II. Neste trabalho, são apresentadas duas propostas de antenas, uma antena dipolo linear combinada com quatros espiras parasitas, capítulo IV, e uma antena planar do tipo espira, capítulo V. No primeiro caso, foram utilizados elementos parasitas e o algoritmo genético para aumentar a largura de banda e, no segundo, foram empregadas fendas no radiador e a otimização paramétrica para este objetivo.
Resumo:
O presente estudo realiza estimativas da condutividade térmica dos principais minerais formadores de rochas, bem como estimativas da condutividade média da fase sólida de cinco litologias básicas (arenitos, calcários, dolomitos, anidritas e litologias argilosas). Alguns modelos térmicos foram comparados entre si, possibilitando a verificação daquele mais apropriado para representar o agregado de minerais e fluidos que compõem as rochas. Os resultados obtidos podem ser aplicados a modelamentos térmicos os mais variados. A metodologia empregada baseia-se em um algoritmo de regressão não-linear denominado de Busca Aleatória Controlada. O comportamento do algoritmo é avaliado para dados sintéticos antes de ser usado em dados reais. O modelo usado na regressão para obter a condutividade térmica dos minerais é o modelo geométrico médio. O método de regressão, usado em cada subconjunto litológico, forneceu os seguintes valores para a condutividade térmica média da fase sólida: arenitos 5,9 ± 1,33 W/mK, calcários 3.1 ± 0.12 W/mK, dolomitos 4.7 ± 0.56 W/mK, anidritas 6.3 ± 0.27 W/mK e para litologias argilosas 3.4 ± 0.48 W/mK. Na sequência, são fornecidas as bases para o estudo da difusão do calor em coordenadas cilíndricas, considerando o efeito de invasão do filtrado da lama na formação, através de uma adaptação da simulação de injeção de poços proveniente das teorias relativas à engenharia de reservatório. Com isto, estimam-se os erros relativos sobre a resistividade aparente assumindo como referência a temperatura original da formação. Nesta etapa do trabalho, faz-se uso do método de diferenças finitas para avaliar a distribuição de temperatura poço-formação. A simulação da invasão é realizada, em coordenadas cilíndricas, através da adaptação da equação de Buckley-Leverett em coordenadas cartesianas. Efeitos como o aparecimento do reboco de lama na parede do poço, gravidade e pressão capilar não são levados em consideração. A partir das distribuições de saturação e temperatura, obtém-se a distribuição radial de resistividade, a qual é convolvida com a resposta radial da ferramenta de indução (transmissor-receptor) resultando na resistividade aparente da formação. Admitindo como referência a temperatura original da formação, são obtidos os erros relativos da resistividade aparente. Através da variação de alguns parâmetros, verifica-se que a porosidade e a saturação original da formação podem ser responsáveis por enormes erros na obtenção da resistividade, principalmente se tais "leituras" forem realizadas logo após a perfuração (MWD). A diferença de temperatura entre poço e formação é a principal causadora de tais erros, indicando que em situações onde esta diferença de temperatura seja grande, perfilagens com ferramentas de indução devam ser realizadas de um a dois dias após a perfuração do poço.
Resumo:
Este trabalho apresenta um método para encontrar um conjunto de pontos de operação, os quais são ótimos de Pareto com diversidade, para linhas digitais de assinante (DSL - digital subscriber line). Em diversos trabalhos encontrados na literatura, têm sido propostos algoritmos para otimização da transmissão de dados em linhas DSL, que fornecem como resultado apenas um ponto de operação para os modems. Esses trabalhos utilizam, em geral, algoritmos de balanceamento de espectro para resolver um problema de alocação de potência, o que difere da abordagem apresentada neste trabalho. O método proposto, chamado de diverseSB , utiliza um processo híbrido composto de um algoritmo evolucionário multiobjetivo (MOEA - multi-objective evolutionary algorithm), mais precisamente, um algoritmo genético com ordenamento por não-dominância (NSGA-II - Non-Dominated Sorting Genetic Algorithm II), e usando ainda, um algoritmo de balanceamento de espectro. Os resultados obtidos por simulações mostram que, para uma dada diversidade, o custo computacional para determinar os pontos de operação com diversidade usando o algoritmo diverseSB proposto é muito menor que métodos de busca de “força bruta”. No método proposto, o NSGA-II executa chamadas ao algoritmo de balanceamento de espectro adotado, por isso, diversos testes envolvendo o mesmo número de chamadas ao algoritmo foram realizadas com o método diverseSB proposto e o método de busca por força bruta, onde os resultados obtidos pelo método diverseSB proposto foram bem superiores do que os resultados do método de busca por força bruta. Por exemplo, o método de força bruta realizando 1600 chamadas ao algoritmo de balanceamento de espectro, obtém um conjunto de pontos de operação com diversidade semelhante ao do método diverseSB proposto com 535 chamadas.
Resumo:
Há muitos anos, técnicas de Computação Evolucionária vem sendo aplicadas com sucesso na solução dos mais variados tipos de problemas de otimização. Na constante procura pelo ótimo global e por uma melhor exploração da superfície de busca, as escolhas para ajustar estes métodos podem ser exponencialmente complexas e requerem uma grande quantidade de intervenção humana. Estes modelos tradicionais darwinianos apóiam-se fortemente em aleatoriedade e escolhas heurísticas que se mantém fixas durante toda a execução, sem que acompanhem a variabilidade dos indivíduos e as eventuais mudanças necessárias. Dadas estas questões, o trabalho introduz a combinação de aspectos da Teoria do Design Inteligente a uma abordagem hibrida de algoritmo evolucionário, através da implementação de um agente inteligente o qual, utilizando lógica fuzzy, monitora e controla dinamicamente a população e seis parâmetros definidos de uma dada execução, ajustando-os para cada situação encontrada durante a busca. Na avaliação das proposições foi construído um protótipo sobre a implementação de um algoritmo genético para o problema do caixeiro viajante simétrico aplicado ao cenário de distância por estradas entre as capitais brasileiras, o que permitiu realizar 580 testes, simulações e comparações entre diferentes configurações apresentadas e resultados de outras técnicas. A intervenção inteligente entrega resultados que, com sucesso em muitos aspectos, superam as implementações tradicionais e abrem um vasto espaço para novas pesquisas e estudos nos aqui chamados: “Algoritmos Evolucionários Híbridos Auto-Adaptáveis”, ou mesmo, “Algoritmos Evolucionários Não-Darwinianos”.
Resumo:
O método de empilhamento sísmico CRS simula seções sísmicas ZO a partir de dados de cobertura múltipla, independente do macro-modelo de velocidades. Para meios 2-D, a função tempo de trânsito de empilhamento depende de três parâmetros, a saber: do ângulo de emergência do raio de reflexão normal (em relação à normal da superfície) e das curvaturas das frentes de onda relacionadas às ondas hipotéticas, denominadas NIP e Normal. O empilhamento CRS consiste na soma das amplitudes dos traços sísmicos em dados de múltipla cobertura, ao longo da superfície definida pela função tempo de trânsito do empilhamento CRS, que melhor se ajusta aos dados. O resultado do empilhamento CRS é assinalado a pontos de uma malha pré-definida na seção ZO. Como resultado tem-se a simulação de uma seção sísmica ZO. Isto significa que para cada ponto da seção ZO deve-se estimar o trio de parâmetros ótimos que produz a máxima coerência entre os eventos de reflexão sísmica. Nesta Tese apresenta-se fórmulas para o método CRS 2-D e para a velocidade NMO, que consideram a topografia da superfície de medição. O algoritmo é baseado na estratégia de otimização dos parâmetros de fórmula CRS através de um processo em três etapas: 1) Busca dos parâmetros, o ângulo de emergência e a curvatura da onda NIP, aplicando uma otimização global, 2) busca de um parâmetro, a curvatura da onda N, aplicando uma otimização global, e 3) busca de três parâmetros aplicando uma otimização local para refinar os parâmetros estimados nas etapas anteriores. Na primeira e segunda etapas é usado o algoritmo Simulated Annealing (SA) e na terceira etapa é usado o algoritmo Variable Metric (VM). Para o caso de uma superfície de medição com variações topográficas suaves, foi considerada a curvatura desta superfície no algoritmo do método de empilhamento CRS 2-D, com aplicação a dados sintéticos. O resultado foi uma seção ZO simulada, de alta qualidade ao ser comparada com a seção ZO obtida por modelamento direto, com uma alta razão sinal-ruído, além da estimativa do trio de parâmetros da função tempo de trânsito. Foi realizada uma nálise de sensibilidade para a nova função de tempo de trânsito CRS em relação à curvatura da superfície de medição. Os resultados demonstraram que a função tempo de trânsito CRS é mais sensível nos pontos-médios afastados do ponto central e para grandes afastamentos. As expressões da velocidade NMO apresentadas foram aplicadas para estimar as velocidades e as profundidades dos refletores para um modelo 2-D com topografia suave. Para a inversão destas velocidades e profundidades dos refletores, foi considerado o algoritmo de inversão tipo Dix. A velocidade NMO para uma superfície de medição curva, permite estimar muito melhor estas velocidades e profundidades dos refletores, que as velocidades NMO referidas as superfícies planas. Também apresenta-se uma abordagem do empilhamento CRS no caso 3-D. neste caso a função tempo de trânsito depende de oito parâmetros. São abordadas cinco estratégias de busca destes parâmetros. A combinação de duas destas estratégias (estratégias das três aproximações dos tempos de trânsito e a estratégia das configurações e curvaturas arbitrárias) foi aplicada exitosamente no empilhamento CRS 3-D de dados sintéticos e reais.
Resumo:
O método de empilhamento sísmico por Superfície de Reflexão Comum (ou empilhamento SRC) produz a simulação de seções com afastamento nulo (NA) a partir dos dados de cobertura múltipla. Para meios 2D, o operador de empilhamento SRC depende de três parâmetros que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0), o raio de curvatura da onda ponto de incidência normal (RNIP) e o raio de curvatura da onda normal (RN). O problema crucial para a implementação do método de empilhamento SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros ótimos associados a cada ponto de amostragem da seção AN a ser simulada. No presente trabalho foi desenvolvido uma nova sequência de processamento para a simulação de seções AN por meio do método de empilhamento SRC. Neste novo algoritmo, a determinação dos três parâmetros ótimos que definem o operador de empilhamento SRC é realizada em três etapas: na primeira etapa são estimados dois parâmetros (β°0 e R°NIP) por meio de uma busca global bidimensional nos dados de cobertura múltipla. Na segunda etapa é usado o valor de β°0 estimado para determinar-se o terceiro parâmetro (R°N) através de uma busca global unidimensional na seção AN resultante da primeira etapa. Em ambas etapas as buscas globais são realizadas aplicando o método de otimização Simulated Annealing (SA). Na terceira etapa são determinados os três parâmetros finais (β0, RNIP e RN) através uma busca local tridimensional aplicando o método de otimização Variable Metric (VM) nos dados de cobertura múltipla. Nesta última etapa é usado o trio de parâmetros (β°0, R°NIP, R°N) estimado nas duas etapas anteriores como aproximação inicial. Com o propósito de simular corretamente os eventos com mergulhos conflitantes, este novo algoritmo prevê a determinação de dois trios de parâmetros associados a pontos de amostragem da seção AN onde há intersecção de eventos. Em outras palavras, nos pontos da seção AN onde dois eventos sísmicos se cruzam são determinados dois trios de parâmetros SRC, os quais serão usados conjuntamente na simulação dos eventos com mergulhos conflitantes. Para avaliar a precisão e eficiência do novo algoritmo, este foi aplicado em dados sintéticos de dois modelos: um com interfaces contínuas e outro com uma interface descontinua. As seções AN simuladas têm elevada razão sinal-ruído e mostram uma clara definição dos eventos refletidos e difratados. A comparação das seções AN simuladas com as suas similares obtidas por modelamento direto mostra uma correta simulação de reflexões e difrações. Além disso, a comparação dos valores dos três parâmetros otimizados com os seus correspondentes valores exatos calculados por modelamento direto revela também um alto grau de precisão. Usando a aproximação hiperbólica dos tempos de trânsito, porém sob a condição de RNIP = RN, foi desenvolvido um novo algoritmo para a simulação de seções AN contendo predominantemente campos de ondas difratados. De forma similar ao algoritmo de empilhamento SRC, este algoritmo denominado empilhamento por Superfícies de Difração Comum (SDC) também usa os métodos de otimização SA e VM para determinar a dupla de parâmetros ótimos (β0, RNIP) que definem o melhor operador de empilhamento SDC. Na primeira etapa utiliza-se o método de otimização SA para determinar os parâmetros iniciais β°0 e R°NIP usando o operador de empilhamento com grande abertura. Na segunda etapa, usando os valores estimados de β°0 e R°NIP, são melhorados as estimativas do parâmetro RNIP por meio da aplicação do algoritmo VM na seção AN resultante da primeira etapa. Na terceira etapa são determinados os melhores valores de β°0 e R°NIP por meio da aplicação do algoritmo VM nos dados de cobertura múltipla. Vale salientar que a aparente repetição de processos tem como efeito a atenuação progressiva dos eventos refletidos. A aplicação do algoritmo de empilhamento SDC em dados sintéticos contendo campos de ondas refletidos e difratados, produz como resultado principal uma seção AN simulada contendo eventos difratados claramente definidos. Como uma aplicação direta deste resultado na interpretação de dados sísmicos, a migração pós-empilhamento em profundidade da seção AN simulada produz uma seção com a localização correta dos pontos difratores associados às descontinuidades do modelo.
Resumo:
A automação na gestão e análise de dados tem sido um fator crucial para as empresas que necessitam de soluções eficientes em um mundo corporativo cada vez mais competitivo. A explosão do volume de informações, que vem se mantendo crescente nos últimos anos, tem exigido cada vez mais empenho em buscar estratégias para gerenciar e, principalmente, extrair informações estratégicas valiosas a partir do uso de algoritmos de Mineração de Dados, que comumente necessitam realizar buscas exaustivas na base de dados a fim de obter estatísticas que solucionem ou otimizem os parâmetros do modelo de extração do conhecimento utilizado; processo que requer computação intensiva para a execução de cálculos e acesso frequente à base de dados. Dada a eficiência no tratamento de incerteza, Redes Bayesianas têm sido amplamente utilizadas neste processo, entretanto, à medida que o volume de dados (registros e/ou atributos) aumenta, torna-se ainda mais custoso e demorado extrair informações relevantes em uma base de conhecimento. O foco deste trabalho é propor uma nova abordagem para otimização do aprendizado da estrutura da Rede Bayesiana no contexto de BigData, por meio do uso do processo de MapReduce, com vista na melhora do tempo de processamento. Para tanto, foi gerada uma nova metodologia que inclui a criação de uma Base de Dados Intermediária contendo todas as probabilidades necessárias para a realização dos cálculos da estrutura da rede. Por meio das análises apresentadas neste estudo, mostra-se que a combinação da metodologia proposta com o processo de MapReduce é uma boa alternativa para resolver o problema de escalabilidade nas etapas de busca em frequência do algoritmo K2 e, consequentemente, reduzir o tempo de resposta na geração da rede.
Resumo:
O trabalho em pauta tem como objetivo o modelamento da crosta, através da inversão de dados de refração sísmica profunda, segundo camadas planas horizontais lateralmente homogêneas, sobre um semi-espaço. O modelo direto é dado pela expressão analítica da curva tempo-distância como uma função que depende da distância fonte-estação e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetórias do raio sísmico, regidas pela Lei de Snell. O cálculo dos tempos de chegada por este procedimento, exige a utilização de um modelo cujas velocidades sejam crescentes com a profundidade, de modo que a ocorrência das camadas de baixa velocidade (CBV) é contornada pela reparametrização do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sísmico, e não como refrator. A metodologia de inversão utilizada tem em vista não só a determinação das soluções possíveis, mas também a realização de uma análise sobre as causas responsáveis pela ambiguidade do problema. A região de pesquisa das prováveis soluções é vinculada segundo limites superiores e inferiores para cada parâmetro procurado, e pelo estabelecimento de limites superiores para os valores de distâncias críticas, calculadas a partir do vetor de parâmetros. O processo de inversão é feito utilizando-se uma técnica de otimização do ajuste de curvas através da busca direta no espaço dos parâmetros, denominado COMPLEX. Esta técnica apresenta a vantagem de poder ser utilizada com qualquer função objeto, e ser bastante prática na obtenção de múltiplas soluções do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-função, o algoritmo foi adaptado de modo a minimizar simultaneamente várias funções objetos, com vínculos nos parâmetros. A inversão é feita de modo a se obter um conjunto de soluções representativas do universo existente. Por sua vez, a análise da ambiguidade é realizada pela análise fatorial modo-Q, através da qual é possível se caracterizar as propriedades comuns existentes no elenco das soluções analisadas. Os testes com dados sintéticos e reais foram feitos tendo como aproximação inicial ao processo de inversão, os valores de velocidades e espessuras calculados diretamente da interpretação visual do sismograma. Para a realização dos primeiros, utilizou-se sismogramas calculados pelo método da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraídos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na região norte da Grã-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros físicos apresentam apenas suaves variações, no conjunto das soluções obtidas.