35 resultados para Otimização. Cadeia de Markov. Algoritmo genético. Controladornebuloso


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação apresenta contribuições à algumas modalidades de gerenciamento de espectro em redes DSL que tem recebido pouca atenção na literatura : minimização de potência e maximização de margem de ruído. Com relação a minimização de potência, cerca de 60% da potência total consumida pelos modems DSL é utilizada na transmissão. A contribuição dessa dissertação nesse âmbito foi provar matematicamente que os algoritmos de maximização de taxa também podem ser usados para minimizar potência. Dessa forma, praticamente se elimina o atraso histórico entre o estado da arte em maximização de taxa e minimização de potência, colocando-os no mesmo nível de desenvolvimento. A segunda contribuição dessa dissertação é sobre a modalidade de maximização de margem de ruído, de modo a otimizar a estabilidade de redes DSL. Nessa linha de pesquisa, essa dissertação apresenta um novo alogoritmo para a maximização de margem multiusuário, que apresenta desempenho superior a um algoritmo publicado anteriormente na literatura especializada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação apresenta os algoritmos considerados estado-da-arte para gerenciamento dinâmico de espectro (DSM). As técnicas de otimização utilizadas nos algoritmos DSM são abordadas e brevemente discutidas para melhor entendimento, descrição e comparação dos algoritmos. A análise comparativa entre os algoritmos foi realizada considerando o ganho em taxa (kbps) obtido em simulações. Para tanto, foi realizado em laboratório um conjunto de medições de função de transferência direta e de acoplamento, posteriormente utilizadas nas simulações dos algoritmos IWF, ISB e SCALE. Os resultados obtidos nas simulações através do uso das funções de transferência medidas mostraram melhor desempenho quando comparados aos demais resultados ao considerar funções de transferência obtidas a partir do padrão 1% pior caso, resultado este reflexo da aproximação 1% em que os pares apresentam maiores níveis de crosstalk em todas as frequências da função de transferência. Dentre os algoritmos comparados, o ISB e SCALE obtiveram desempenho semelhante em canais padronizados, ficando o IWF com o desempenho próximo ao SSM. No entanto, nas simulações em cenários com canais medidos, os três algoritmos tiveram ganhos muito próximo devido ao baixo nível de crosstalk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante o processo de extração do conhecimento em bases de dados, alguns problemas podem ser encontrados como por exemplo, a ausência de determinada instância de um atributo. A ocorrência de tal problemática pode causar efeitos danosos nos resultados finais do processo, pois afeta diretamente a qualidade dos dados a ser submetido a um algoritmo de aprendizado de máquina. Na literatura, diversas propostas são apresentadas a fim de contornar tal dano, dentre eles está a de imputação de dados, a qual estima um valor plausível para substituir o ausente. Seguindo essa área de solução para o problema de valores ausentes, diversos trabalhos foram analisados e algumas observações foram realizadas como, a pouca utilização de bases sintéticas que simulem os principais mecanismos de ausência de dados e uma recente tendência a utilização de algoritmos bio-inspirados como tratamento do problema. Com base nesse cenário, esta dissertação apresenta um método de imputação de dados baseado em otimização por enxame de partículas, pouco explorado na área, e o aplica para o tratamento de bases sinteticamente geradas, as quais consideram os principais mecanismos de ausência de dados, MAR, MCAR e NMAR. Os resultados obtidos ao comprar diferentes configurações do método à outros dois conhecidos na área (KNNImpute e SVMImpute) são promissores para sua utilização na área de tratamento de valores ausentes uma vez que alcançou os melhores valores na maioria dos experimentos realizados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A automação na gestão e análise de dados tem sido um fator crucial para as empresas que necessitam de soluções eficientes em um mundo corporativo cada vez mais competitivo. A explosão do volume de informações, que vem se mantendo crescente nos últimos anos, tem exigido cada vez mais empenho em buscar estratégias para gerenciar e, principalmente, extrair informações estratégicas valiosas a partir do uso de algoritmos de Mineração de Dados, que comumente necessitam realizar buscas exaustivas na base de dados a fim de obter estatísticas que solucionem ou otimizem os parâmetros do modelo de extração do conhecimento utilizado; processo que requer computação intensiva para a execução de cálculos e acesso frequente à base de dados. Dada a eficiência no tratamento de incerteza, Redes Bayesianas têm sido amplamente utilizadas neste processo, entretanto, à medida que o volume de dados (registros e/ou atributos) aumenta, torna-se ainda mais custoso e demorado extrair informações relevantes em uma base de conhecimento. O foco deste trabalho é propor uma nova abordagem para otimização do aprendizado da estrutura da Rede Bayesiana no contexto de BigData, por meio do uso do processo de MapReduce, com vista na melhora do tempo de processamento. Para tanto, foi gerada uma nova metodologia que inclui a criação de uma Base de Dados Intermediária contendo todas as probabilidades necessárias para a realização dos cálculos da estrutura da rede. Por meio das análises apresentadas neste estudo, mostra-se que a combinação da metodologia proposta com o processo de MapReduce é uma boa alternativa para resolver o problema de escalabilidade nas etapas de busca em frequência do algoritmo K2 e, consequentemente, reduzir o tempo de resposta na geração da rede.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em sistemas híbridos de geração de eletricidade (SHGEs) é fundamental avaliar corretamente o dimensionamento, a operação e a gestão do sistema, de forma a evitar seu colapso prematuro e garantir a continuidade do fornecimento de energia elétrica com a menor intervenção possível de usuários ou de empresas geradoras e distribuidoras de eletricidade. O presente trabalho apresenta propostas de otimização para as etapas de dimensionamento, operação e gestão de SHGEs atendendo minirredes de distribuição de eletricidade. É proposta uma estratégia de operação que visa otimizar o despacho de energia do sistema, identificando a melhor relação, sob aspectos técnicos e econômicos, entre o atendimento da carga exclusivamente via fontes renováveis e banco de baterias ou exclusivamente via grupo gerador, e o carregamento do banco de baterias somente pelas fontes renováveis ou também pelo grupo gerador. Desenvolve-se, também, um algoritmo de dimensionamento de SHGEs, com auxílio de algoritmos genéticos e simulated annealing, técnicas meta-heurísticas de otimização, visando apresentar a melhor configuração do sistema, em termos de equipamentos que resultem na melhor viabilidade técnica e econômica para uma dada condição de entrada definida pelo usuário. Por fim, é proposto um modelo de gestão do sistema, considerando formas de tarifação e sistemas de controle de carga, cujo objetivo é garantir uma relação adequada entre a disponibilidade energética do sistema de geração e a carga demandada. A estratégia de operação proposta combina as estratégias de operação descontínua do grupo gerador, da potência crítica e do ponto otimizado de contribuição do gerador no carregamento do banco de baterias, e seus resultados indicam que há redução nos custos de operação globais do sistema. Com relação ao dimensionamento ótimo, o algoritmo proposto, em comparação a outras ferramentas de otimização de SHGEs, apresenta bons resultados, sendo adequado à realidade nacional. O modelo de gestão do sistema propõe o estabelecimento de limites de consumo e demanda, adequados à realidade de comunidades isoladas atendidas por sistemas com fontes renováveis e, se corretamente empregados, podem ajudar a garantir a sustentabilidade dos sistemas.