37 resultados para cadores neurais
Resumo:
Esse trabalho compara os algoritmos C4.5 e MLP (do inglês “Multilayer Perceptron”) aplicados a avaliação de segurança dinâmica ou (DSA, do inglês “Dynamic Security Assessment”) e em projetos de controle preventivo, com foco na estabilidade transitória de sistemas elétricos de potência (SEPs). O C4.5 é um dos algoritmos da árvore de decisão ou (DT, do inglês “Decision Tree”) e a MLP é um dos membros da família das redes neurais artificiais (RNA). Ambos os algoritmos fornecem soluções para o problema da DSA em tempo real, identificando rapidamente quando um SEP está sujeito a uma perturbação crítica (curto-circuito, por exemplo) que pode levar para a instabilidade transitória. Além disso, o conhecimento obtido de ambas as técnicas, na forma de regras, pode ser utilizado em projetos de controle preventivo para restaurar a segurança do SEP contra perturbações críticas. Baseado na formação de base de dados com exaustivas simulações no domínio do tempo, algumas perturbações críticas específicas são tomadas como exemplo para comparar os algoritmos C4.5 e MLP empregadas a DSA e ao auxílio de ações preventivas. O estudo comparativo é testado no sistema elétrico “New England”. Nos estudos de caso, a base de dados é gerada por meio do programa PSTv3 (“Power System Toolbox”). As DTs e as RNAs são treinada e testadas usando o programa Rapidminer. Os resultados obtidos demonstram que os algoritmos C4.5 e MLP são promissores nas aplicações de DSA e em projetos de controle preventivo.
Resumo:
O período crítico de plasticidade do córtex cerebral é a etapa do desenvolvimento pós-natal do sistema nervoso onde os circuitos neurais são mais suscetíveis à mudanças influenciadas por informações oriundas do ambiente. No córtex pré-frontal de humanos, responsável pelas funções executivas, o período crítico de plasticidade estende-se desde o nascimento até o final da adolescência e início da vida adulta. Isto é definido, entre outros fatores, pelo amadurecimento das redes perineuronais, uma estrutura especializada da matriz extracelular, localizada em volta do corpo celular e dendritos proximais de interneurônios inibitórios. O objetivo desta pesquisa foi verificar o efeito do ambiente em etapas distintas da adolescência sobre a estrutura e a função do córtex pré-frontal de ratos e a distribuição da expressão espacial e temporal das redes perineuronais sob estas condições. As funções executivas foram avaliadas através de testes comportamentais medindo a capacidade de memória operacional e a inibição comportamental. Observamos que estímulos estressores crônicos imprevisíveis provocam alterações no período crítico de plasticidade do córtex pré-frontal e, consequentemente, influenciam o amadurecimento das funções executivas. Observamos também que o estresse crônico induz modificação no padrão de amadurecimento das redes perineuronais no córtex pré-frontal. Estes resultados indicam a vulnerabilidade do córtex pré-frontal de ratos adolescentes para os efeitos negativos de estímulos ambientais estressores sobre o período crítico de plasticidade.
Resumo:
Apesar das diversas vantagens oferecidas pelas redes neurais artificiais (RNAs), algumas limitações ainda impedem sua larga utilização, principalmente em aplicações que necessitem de tomada de decisões essenciais para garantir a segurança em ambientes como, por exemplo, em Sistemas de Energia. Uma das principais limitações das RNAs diz respeito à incapacidade que estas redes apresentam de explicar como chegam a determinadas decisões; explicação esta que seja humanamente compreensível. Desta forma, este trabalho propõe um método para extração de regras a partir do mapa auto-organizável de Kohonen, projetando um sistema de inferência difusa capaz de explicar as decisões/classificação obtidas através do mapa. A metodologia proposta é aplicada ao problema de diagnóstico de faltas incipientes em transformadores, em que se obtém um sistema classificatório eficiente e com capacidade de explicação em relação aos resultados obtidos, o que gera mais confiança aos especialistas da área na hora de tomar decisões.
Resumo:
No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.
Resumo:
A principal dificuldade encontrada na proteção diferencial de transformadores de potência é a correta distinção entre as correntes de inrush e as correntes de faltas internas. Tradicionalmente os relés diferenciais executam esta tarefa utilizando a técnica de restrição por harmônicos baseada na premissa de que as correntes de inrush possuem alta concentração de componentes harmônicas de segunda ordem, contudo essa técnica nem sempre é eficaz. O presente trabalho tem como objetivo apresentar a proposta de duas novas metodologias capazes de realizar a identificação e distinção entre as correntes de inrush das correntes de faltas internas na proteção diferencial de transformadores de potência através de metodologias que não dependem do conteúdo de harmônicos do sinal da corrente diferencial. A primeira metodologia proposta, denominada de método do gradiente da corrente diferencial, é baseada no comportamento do vetor gradiente, obtido através da diferenciação numérica do sinal da corrente diferencial. O critério de distinção utilizado é baseado no desvio padrão do ângulo do vetor gradiente que apresenta comportamento diferenciado para correntes de inrush e correntes de curto-circuito. A segunda metodologia proposta é baseada na capacidade de reconhecimento e classificação de padrões das redes neurais de Mapeamento Auto-organizável de Kohonen. Como padrão de entrada e de treinamento da rede neural é utilizado um vetor contendo quatro níveis do espectro do desvio padrão do ângulo do vetor gradiente da corrente diferencial nas três fases do transformador de potência. A eficácia dos métodos foi testada através da simulação de diversas situações de faltas internas e correntes de inrush, incluindo situações de “Sympathetic Inrush”, em um transformador de potência usando o software EMTP/ATP e através da implementação do algoritmo em MATLAB®, apresentando resultados altamente promissores.
Resumo:
Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.
Resumo:
Historicamente conhecida por suas ações sobre o sistema reprodutor, hoje se sabe que a ocitocina (OT) também pode contribuir para a regulação da homeostase cardiovascular e hidroeletrolítica. A OT é produzida nos núcleos supra-óptico e paraventricular do hipotálamo e liberada para o plasma a partir de terminais neurais da pituitária posterior, no entanto, muitos estudos identificaram locais extra-cerebrais de produção OT, incluindo o coração e o endotélio vascular. A ativação de seus receptores em células endoteliais, bem como em sistemas hipotalâmicos/hipofisários e cardíaco, pode resultar na produção de óxido nítrico (NO). O presente trabalho teve como objetivo verificar o papel do NO na regulação da secreção de peptídeo natriurético atrial (ANP) estimulada por OT em cultura primária de cardiomiócitos de embriões de camundongos. Para tal, corações de embriões de camundongos Balb C, com 19 a 21 dias de vida intra-uterina, foram isolados e cultivados para os ensaios com OT e demais substâncias interferentes na síntese de NO e GMPc seu segundo mensageiro. A adição de concentrações crescentes de OT (0.1, 1, 10 e 100 μM) induziu aumento proporcional na secreção de ANP e nitrato para o meio, confirmando a ação estimuladora da OT em cardiomiócitos. O bloqueio da liberação de ANP estimulada por OT (10 μM) foi observada após adição de Ornitina Vasotocina (CVI-OVT) (100 μM), um antagonista específico de OT. Este antagonista inibiu a secreção basal de ANP, quando adicionado individualmente, sugerindo que a OT pode atuar via mecanismo autócrino, tônico estimulatório sobre a secreção de ANP. Amplificação da secreção de ANP estimulada por OT (10 μM) foi observada após sua associação com L-NAME, um inibidor da sintase de óxido nítrico (NOS) (600 μM), e ODQ (100 μM), um inibidor da guanilato ciclase solúvel, sugerindo a ocorrência de feedback negativo nitrérgico na liberação de ANP estimulada por OT no cardiomiócito. Os resultados obtidos mostraram modulação nitrérgica inibidora sobre a secreção de ANP estimulada por OT.
Resumo:
INTRODUÇÃO: A deglutição é um processo fisiológico complexo que acontece por uma sequência motora automática, regulada por um complicado mecanismo neuromotor e neuromuscular que é iniciado de maneira consciente e é resultado da integridade anatômica e funcional de diversas estruturas faciais. É de extrema importância para a nutrição do organismo como um todo. Um dos maiores desafios no campo das ciências é identificar os substratos neurais de comportamentos fisiológicos, incluindo esse processo de deglutição. O desenvolvimento da tecnologia em neuroimagem funcional nos últimos anos está provocando um rápido avanço no conhecimento de funções cerebrais, o que resultou numa explosão de novos achados em neurociência. OBJETIVO: Mapear as regiões de ativação cerebral durante o fenômeno da deglutição por meio do exame de ressonância magnética funcional. MÉTODO: Participaram do estudo quatro indivíduos do sexo feminino, com idade entre 18 e 30 anos, sem alterações neurológicas, estruturais e alimentares. Após a aprovação da Instituição (Clínica Lobo), do Comité de Ética e Pesquisa do Instituto de Ciências da Saúde (ICS) e a aprovação escrita de cada paciente através do termo de consentimento livre e esclarecido, foram submetidos a quatro provas deglutórias, utilizando a técnica de ressonância magnética funcional. RESULTADOS: Foi possível a determinação da ativação dos hemisférios cerebrais e cerebelares e as especificas áreas que os compõem. Mesmo com uma amostragem pequena, os resultados das análises individuais mostraram padrões de acordo com a literatura, conjuntamente com dados novos. DISCUSSÃO: O cerebelo é responsável pela coordenação da ação motora e manutenção da harmonia dos movimentos, posição e equilíbrio do bolo alimentar; o bolbo raquidiano juntamente com o tronco cerebral constitui o centro de atividades reflexas que controla funções ou respostas orgânicas automáticas como a deglutição; o mesencéfalo é a parte do encéfalo que coordena a informação visual; o tálamo encaminha quase todo o tipo de informação sensorial para as zonas específicas do córtex cerebral; o hipotálamo, importante na experimentação das sensações de prazer, regula as funções homeostáticas do corpo, gustação, olfação, salivação, interagindo com o sistema nervoso autônomo e o sistema límbico está ligado ao controle e direção das reações emocionais, sob a ação da amígdala, no processamento de odores e no armazenamento de conteúdos da memória, aqui através do hipocampo. CONCLUSÃO: O ato de deglutir é um processo complexo, ativando muitas áreas cerebrais, dentre elas podemos destacar a gustativa, mental/visual e a olfativa e que é iniciado muito antes dos processos mecânicos envolvidos, conforme demonstrado pelas áreas corticais e subcorticais ativadas. A área olfativa foi a mais notadamente destacada nas imagens colhidas pela Rmf.
Resumo:
As Redes da Próxima Geração consistem no desenvolvimento de arquiteturas que viabilizem a continuidade de serviços que proporcionem sempre a melhor conectividade (Always Best Connectivity - ABC) aos usuários móveis com suporte adequado à Qualidade de Experiência (QoE) para aplicações multimídia de alta definição, nesse novo contexto as arquiteturas têm perspectiva orientada a serviços e não a protocolos. Esta tese apresenta uma arquitetura para redes da próxima geração capaz de fornecer acesso heterogêneo sem fio e handover vertical transparente para as aplicações multimídia. A tese considera diferentes tecnologias sem fio e também adota o padrão IEEE 802.21 (Media Independent Handover – MIH) para auxiliar na integração e gerenciamento das redes heterogêneas sem fio. As tecnologias que a arquitetura possui são: IEEE 802.11 (popularmente denominada de WiFi), IEEE 802.16 (popularmente denominada de WiMAX) e LTE (popularmente denominada de redes 4G). O objetivo é que arquitetura tenha a capacidade de escolher entre as alternativas disponíveis a melhor conexão para o momento. A arquitetura proposta apresenta mecanismos de predição de Qualidade de Experiência (Quality of Experience - QoE) que será o parâmetro decisivo para a realização ou não do handover para uma nova rede. A predição para determinar se haverá ou não mudança de conectividade será feita com o uso da inteligência computacional de Redes Neurais Artificiais. Além disso a arquitetura também apresenta um mecanismo de descarte seletivo de pacotes especifico para aplicações multimídia. A proposta é avaliada via simulação utilizando-se o ns-2 (Network Simulator) e os resultados de desempenho são apresentados através das métricas de QoS, de QoE e também visualmente através da exibição de frames dos vídeos transmitidos na arquitetura.
Resumo:
Uma das tarefas da pesquisa em Arqueologia da Amazônia é compreender as relações entre as populações humanas pretéritas e a floresta tropical úmida. É muito importante definir as unidades de paisagem no contexto do processo de ocupação humana e assim, integrar esses dados ao contexto dos sítios arqueológicos. Este estudo tem como objetivo definir a composição de unidades de paisagem atual do sítio arqueológico PA-BA-84: ALUNORTE, em termos taxonômicos, utilizando a abordagem geográfica da Ecologia de Paisagem como uma eficiente ferramenta na política de preservação do patrimônio arqueológico. Esta abordagem sistêmica destaca a interdependência mútua dos elementos da paisagem e as interações entre estes, gerando duas unidades espaciais de análise do sítio arqueológico: o micromeio e o macromeio. A classificação taxonômica das unidades de paisagem está relacionada com a aplicação de diferentes escalas espaciais, onde o geossistema refere-se às escalas de menor detalhe para a análise do macromeio do sítio, enquanto as unidades geofácies e geótopo relacionam-se às escalas de maior detalhe referentes à análise do micromeio. O resgate das informações ambientais passa pelo uso sensoriamento remoto e o geoprocessamento da imagem SPOT, como uma ferramenta eficaz para a definição das unidades de paisagem. A classificação da imagem foi otimizada com o classificador baseado em redes neurais, com trabalhos de campo e com dados do Programa de Arqueologia Preventiva na área do Projeto Bauxita Paragominas/PA. Desta forma, a definição das unidades de paisagem do sitio Alunorte passa pela associação de classificação não supervisionada com classificação supervisionada. Os resultados mostraram que o geossistema do macromeio é constituído por oito geofácies, representadas por áreas construídas, áreas de cultivo agrícolas, rios, praias, várzea, vegetação em áreas alagadas, capoeira adulta e capoeira jovem. A delimitação espacial do geossistema obedece aos limites da bacia hidrográfica do rio Murucupi. O micromeio é definido a partir do sistema de nascente do rio Murucupi e apresenta cinco geofácies que são constituídas por áreas construídas, rios, praias, várzea, capoeira adulta e capoeira jovem. O sítio está assentado sobre rampas de colúvio, a qual é constituída por rampas inferior, média e superior, o que está diretamente relacionado com os geotópos que cobrem o relevo do micromeio. Na rampa superior foi registrada a maior concentração de vestígios arqueológicos, o que representa, certamente, o local do assentamento humano pretérito, no processo de ocupação pré-histórico, iniciado há mil anos, o que coincide com uma paleogeofácies de manguezal na praia de Itupanema. O geossistema é caracterizado por um alto grau de antropização representado a partir de ciclos cada vez mais curtos de regeneração da cobertura vegetal. Esta degradação afeta diretamente o patrimônio arqueológico, por isso, os estudos que visam preservar esse patrimônio, preocupados com o resgate do processo de ocupação da Amazônia, devem priorizar a preservação conjunta do mesmo com o geossistema em que está inserido.
Resumo:
O imageamento da porosidade é uma representação gráfica da distribuição lateral da porosidade da rocha, estimada a partir de dados de perfis geofísicos de poço. Apresenta-se aqui uma metodologia para produzir esta imagem geológica, totalmente independente da intervenção do intérprete, através de um algoritmo, dito, interpretativo baseado em dois tipos de redes neurais artificiais. A primeira parte do algoritmo baseia-se em uma rede neural com camada competitiva e é construído para realizar uma interpretação automática do clássico gráfico o Pb - ΦN, produzindo um zoneamento do perfil e a estimativa da porosidade. A segunda parte baseia-se em uma rede neural com função de base radial, projetado para realizar uma integração espacial dos dados, a qual pode ser dividida em duas etapas. A primeira etapa refere-se à correlação de perfis de poço e a segunda à produção de uma estimativa da distribuição lateral da porosidade. Esta metodologia ajudará o intérprete na definição do modelo geológico do reservatório e, talvez o mais importante, o ajudará a desenvolver de um modo mais eficiente as estratégias para o desenvolvimento dos campos de óleo e gás. Os resultados ou as imagens da porosidade são bastante similares às seções geológicas convencionais, especialmente em um ambiente deposicional simples dominado por clásticos, onde um mapa de cores, escalonado em unidades de porosidade aparente para as argilas e efetiva para os arenitos, mostra a variação da porosidade e a disposição geométrica das camadas geológicas ao longo da seção. Esta metodologia é aplicada em dados reais da Formação Lagunillas, na Bacia do Lago Maracaibo, Venezuela.
Resumo:
A correlação estratigráfica busca a determinação da continuidade lateral das rochas, ou a equivalência espacial entre unidades litológicas em subsuperfície, a partir de informações geológico-geofísicas oriundas de poços tubulares, que atravessam estas rochas. Normalmente, mas não exclusivamente, a correlação estratigráfica é realizada a partir das propriedades físicas registradas nos perfis geofísicos de poço. Neste caso, busca-se a equivalência litológica a partir da equivalência entre as propriedades físicas, medidas nos vários poços de um campo petrolífero. A técnica da correlação estratigráfica com perfis geofísicos de poço não é uma atividade trivial e sim, sujeita a inúmeras possibilidades de uma errônea interpretação da disposição geométrica ou da continuidade lateral das rochas em subsuperfície, em função da variabilidade geológica e da ambigüidade das respostas das ferramentas. Logo, é recomendável a utilização de um grande número de perfis de um mesmo poço, para uma melhor interpretação. A correlação estratigráfica é fundamental para o engenheiro de reservatório ou o geólogo, pois a partir da mesma, é possível a definição de estratégias de explotação de um campo petrolífero e a interpretação das continuidades hidráulicas dos reservatórios, bem como auxílio para a construção do modelo geológico para os reservatórios, a partir da interpretação do comportamento estrutural das diversas camadas em subsuperfície. Este trabalho apresenta um método de automação das atividades manuais envolvidas na correlação estratigráfica, com a utilização de vários perfis geofísicos de poço, através de uma arquitetura de rede neural artificial multicamadas, treinada com o algoritmo de retropropagação do erro. A correlação estratigráfica, obtida a partir da rede neural artificial, possibilita o transporte da informação geológica do datum de correlação ao longo do campo, possibilitando ao intérprete, uma visão espacial do comportamento do reservatório e a simulação dos possíveis paleoambientes. Com a metodologia aqui apresentada foi possível a construção automática de um bloco diagrama, mostrando a disposição espacial de uma camada argilosa, utilizando-se os perfis de Raio Gama (RG), Volume de Argila (Vsh), Densidade (ρb) e de Porosidade Neutrônica (φn) selecionados em cinco poços da região do Lago Maracaibo, na Venezuela.
Resumo:
Para a indústria do petróleo, a interpretação dos perfis de poço é a principal fonte de informação sobre a presença e quantificação de hidrocarbonetos em subsuperfície. Entretanto, em duas situações as novas tecnologias, tanto em termos do processo construtivo das ferramentas, quanto da transmissão dos dados não têm justificativa econômica, ensejando a utilização de um conjunto de perfis convencionais: reavaliações de campos maduros e avaliações de campos marginais. Os procedimentos de aquisição dos perfis convencionais podem alterar o valor da propriedade física bem como a localização dos limites verticais de uma camada rochosa. Este é um antigo problema na geofísica de poço – o paradoxo entre a resolução vertical e a profundidade de investigação de uma ferramenta de perfilagem. Hoje em dia, isto é contornado através da alta tecnologia na construção das novas ferramentas, entretanto, este problema ainda persiste no caso das ferramentas convencionais como, a ferramenta de raio gama natural (GR). Apresenta-se, neste trabalho, um novo método para atenuar as alterações induzidas no perfil pela ferramenta, através da integração do clássico modelo convolucional do perfil com as redes neurais recorrentes. Assume-se que um perfil de poço pode ser representado através da operação de convolução em profundidade entre a variação da propriedade física da rocha (perfil ideal) e uma função que representa a alteração produzida sobre a propriedade física, chamada como resposta vertical da ferramenta. Assim, desenvolve-se um processamento iterativo dos perfis, o qual atua na forma da operação de deconvolução, composto por três redes neurais recorrentes. A primeira visa estimar a resposta vertical da ferramenta; a segunda procura definir os limites verticais de cada camada rochosa e a última é construída para estimar o valor real da propriedade física. Este processamento é iniciado com uma estimativa externa tanto para o perfil ideal, quanto para a resposta vertical da ferramenta. Finalmente, mostram-se as melhorias na resolução vertical e na avaliação da propriedade física produzida por esta metodologia em perfis sintéticos e em perfis reais da formação Lagunillas, bacia do Lago Maracaibo, Venezuela.
Resumo:
As redes neurais artificiais têm provado serem uma poderosa técnica na resolução de uma grande variedade de problemas de otimização. Nesta dissertação é desenvolvida uma nova rede neural, tipo recorrente, sem realimentação (self-feedback loops) e sem neurônios ocultos, para o processamento do sinal sísmico, para fornecer a posição temporal, a polaridade e as amplitudes estimadas dos refletores sísmicos, representadas pelos seus coeficientes de reflexão. A principal característica dessa nova rede neural consiste no tipo de função de ativação utilizada, a qual permite três possíveis estados para o neurônio. Busca-se estimar a posição dos refletores sísmicos e reproduzir as verdadeiras polaridades desses refletores. A idéia básica desse novo tipo de rede, aqui denominada rede neural discreta (RND), é relacionar uma função objeto, que descreve o problema geofísico, com a função de Liapunov, que descreve a dinâmica da rede neural. Deste modo, a dinâmica da rede leva a uma minimização local da sua função de Liapunov e consequentemente leva a uma minimização da função objeto. Assim, com uma codificação conveniente do sinal de saída da rede tem-se uma solução do problema geofísico. A avaliação operacional da arquitetura desta rede neural artificial é realizada em dados sintéticos gerados através do modelo convolucional simples e da teoria do raio. A razão é para explicar o comportamento da rede com dados contaminados por ruído, e diante de pulsos fonte de fases mínima, máxima e misturada.
Resumo:
Duas das mais importantes atividades da interpretação de perfis para avaliação de reservatórios de hidrocarbonetos são o zoneamento do perfil (log zonation) e o cálculo da porosidade efetiva das rochas atravessadas pelo poço. O zoneamento é a interpretação visual do perfil para identificação das camadas reservatório e, consequentemente, dos seus limites verticais, ou seja, é a separação formal do perfil em rochas reservatório e rochas selante. Todo procedimento de zoneamento é realizado de forma manual, valendo-se do conhecimento geológico-geofísico e da experiência do intérprete, na avaliação visual dos padrões (características da curva do perfil representativa de um evento geológico) correspondentes a cada tipo litológico específico. O cálculo da porosidade efetiva combina tanto uma atividade visual, na identificação dos pontos representativos de uma particular rocha reservatório no perfil, como a escolha adequada da equação petrofísica que relaciona as propriedades físicas mensuradas da rocha com sua porosidade. A partir do conhecimento da porosidade, será estabelecido o volume eventualmente ocupado por hidrocarboneto. Esta atividade, essencial para a qualificação de reservatórios, requer muito do conhecimento e da experiência do intérprete de perfil para a efetiva avaliação da porosidade efetiva, ou seja, a porosidade da rocha reservatório, isenta do efeito da argila sobre a medida das propriedades físicas da mesma. Uma forma eficiente de automatizar estes procedimentos e auxiliar o geofísico de poço nestas atividades, que particularmente demandam grande dispêndio de tempo, é apresentado nesta dissertação, na forma de um novo perfil, derivado dos perfis tradicionais de porosidade, que apresenta diretamente o zoneamento. Pode-se destacar neste novo perfil as profundidades do topo e da base das rochas reservatório e das rochas selante, escalonado na forma de porosidade efetiva, denominado perfil de porosidade efetiva zoneado. A obtenção do perfil de porosidade efetiva zoneado é baseado no projeto e execução de várias arquiteturas de rede neural artificial, do tipo direta, com treinamento não supervisionado e contendo uma camada de neurônios artificiais, do tipo competitivo. Estas arquiteturas são projetadas de modo a simular o comportamento do intérprete de perfil, quando da utilização do gráfico densidade-neutrônico, para as situações de aplicabilidade do modelo arenito-folhelho. A aplicabilidade e limitações desta metodologia são avaliadas diretamente sobre dados reais, oriundos da bacia do Lago Maracaibo (Venezuela).