29 resultados para Algoritmo genético multi-objectivo
Resumo:
Nesta dissertação apresenta-se o problema de redução de ordem de modelos dinâmicos lineares, sob o ponto de vista de otimização via Algoritmos Genéticos. Uma função custo, obtida a partir da norma dos coeficientes do numerador da função de transferência do erro entre o modelo original e o reduzido, e minimizada por meio de um algoritmo genético, com consequente calculo dos parâmetros do modelo reduzido. O procedimento e aplicado em alguns exemplos que demonstram a validade da abordagem.
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.
Resumo:
Este artigo apresenta uma aplicação do método para determinação espectrofotométrica simultânea dos íons divalentes de cobre, manganês e zinco à análise de medicamento polivitamínico/polimineral. O método usa 4-(2-piridilazo) resorcinol (PAR), calibração multivariada e técnicas de seleção de variáveis e foi otimizado o empregando-se o algoritmo das projeções sucessivas (APS) e o algoritmo genético (AG), para escolha dos comprimentos de onda mais informativos para a análise. Com essas técnicas, foi possível construir modelos de calibração por regressão linear múltipla (RLM-APS e RLM-AG). Os resultados obtidos foram comparados com modelos de regressão em componentes principais (PCR) e nos mínimos quadrados parciais (PLS). Demonstra-se a partir do erro médio quadrático de previsão (RMSEP) que os modelos apresentam desempenhos semelhantes ao prever as concentrações dos três analitos no medicamento. Todavia os modelos RLM são mais simples pois requerem um número muito menor de comprimentos de onda e são mais fáceis de interpretar que os baseados em variáveis latentes.
Resumo:
ABSTRACT: This paper presents an encoding scheme adapted for Fiber Bragg Grating (FBG) optimization using metaheuristics. The proposed encoding scheme uses spline approximations in order to build softened refractive index profiles from few encoded parameters. This approach is suitable for Fiber Bragg Grating (FBG) synthesis because it ensures both the reduction of the problem dimensionality and the respect of important restrictions associated to the FBG manufacture. Simulations are shown where an ES using the spline encoding was able to converge faster and produce more interesting filters, when compared with conventional encoding schemes.
Resumo:
No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.
Resumo:
As Redes de Sensores Sem Fio possuem capacidades limitadas de processamento, armazenamento, comunicação (largura de banda) e fonte de energia, além de possuírem características e requisitos básicos de uma RSSF como: necessidade de se auto-organizar, comunicação com difusão de curto alcance e roteamento com múltiplos saltos. Neste trabalho é proposto uma ferramenta que otimize o posicionamento e os pacotes entregues através do uso de Algoritmo Genético (AG). Para solucionar o problema de roteamento que melhore o consumo de energia e maximize a agregação de dados é proposto a utilização de lógica fuzzy no protocolo de roteamento Ad hoc Ondemand Distance Vector (AODV). Esta customização é intitulada AODV – Fuzzy for Wireless Sensor Networks (AODV-FWSN). Os resultados mostram que a solução proposta é eficiente e consegue prolongar a vida útil da RSSF e melhorar a taxa de entrega de dados quando comparado com soluções similares.
Resumo:
Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.
Resumo:
Este trabalho apresenta uma modelagem paramétrica (auto-regressiva) linear aplicável a estudos de propagação de televisão digital e telefonia celular para cidades densamente arborizadas. A modelagem proposta apresenta um forte embasamento estatístico e depende apenas de dados provenientes de medição, no caso dados relativos a potência recebida e o valor de PSNR (Peak Signal-to-Noise Ratio). Um algoritmo genético é utilizado no cálculo dos parâmetros de ajuste do modelo a um conjunto de dados. O trabalho foi realizado na faixa de televisão digital e foram analisadas duas variáveis: a potência recebida do sinal e o valor de PSNR. Foram executadas campanhas de medição na cidade de Belém. Nestas medições foram coletados dados de potência e gravados vídeos da programação diária de uma emissora de televisão. Os resultados podem ser aplicados no planejamento de serviços de telecomunicações.
Resumo:
O sistema WDM (Wavelength Division Multiplexing) é considerado como uma tecnologia madura para ser usada no backbone de redes ópticas. Entretanto, encontrar uma solução ótima para o algoritmo de atribuição de comprimento de onda no projeto e operação destas redes, ainda é uma questão em aberto. A pesquisa realizada nesta tese aborda os principais aspectos relacionados ao processo de atribuição de comprimento de onda em sistemas WDM, e como resultado foi proposta uma metodologia que minimiza a degradação do sinal óptico gerada pela modulação de fase cruzada (XPM – Cross-Phase Modulation). Esta proposta é composta por uma metodologia híbrida baseada em Coloração de Grafo e Algoritmo Genético (AG), sendo que o primeiro tem a função de reduzir o número de comprimentos de onda necessários para atender a matriz de tráfego (que é fornecida a priori) e o último tem a função de encontrar a ordem de ativação de canais na grade de comprimentos de onda, com o objetivo de reduzir o efeito XPM. A proposta foi comparada com o algoritmo First-Fit em diferentes cenários e topologias de redes, e demonstrou uma considerável redução na probabilidade de bloqueio.
Resumo:
Esta dissertação apresenta um método baseado em algoritmos genéticos para cálculo de equivalentes dinâmicos de sistemas de potência visando representar partes de um sistema para estudos de análise de estabilidade transitória. O modelo do equivalente dinâmico é obtido por meio da identificação de parâmetros de geradores síncronos, localizados nas barras de fronteira entre o sistema externo e o subsistema em estudo. Um indicie é usado para avaliar a proximidade entre as simulações realizadas usando o modelo completo e o modelo reduzido, após serem submetidos a grandes distúrbios no subsistema em estudo. Diferentes condições operacionais foram levadas em conta. As simulações foram realizadas usando os softwares GAOT “The Genetic Algorithm Optimization Toolbox”, ANAREDE e ANATEM. Esse método foi testado no sistema teste duas áreas do Kundur e no Sistema Interligado Nacional (SIN). Os resultados validaram a eficácia do método desenvolvido para o cálculo de equivalentes dinâmicos robustos.
Resumo:
In this paper, we propose a hybrid methodology based on Graph-Coloring and Genetic Algorithm (GA) to solve the Wavelength Assignment (WA) problem in optical networks, impaired by physical layer effects. Our proposal was developed for a static scenario where the physical topology and traffic matrix are known a priori. First, we used fixed shortest-path routing to attend demand requests over the physical topology and the graph-coloring algorithm to minimize the number of necessary wavelengths. Then, we applied the genetic algorithm to solve WA. The GA finds the wavelength activation order on the wavelengths grid with the aim of reducing the Cross-Phase Modulation (XPM) effect; the variance due to the XPM was used as a function of fitness to evaluate the feasibility of the selected WA solution. Its performance is compared with the First-Fit algorithm in two different scenarios, and has shown a reduction in blocking probability up to 37.14% when considered both XPM and residual dispersion effects and up to 71.42% when only considered XPM effect. Moreover, it was possible to reduce by 57.14% the number of wavelengths.
Resumo:
A localização de bancos de capacitores nas redes de distribuição de energia elétrica, corretamente dimensionados, busca compensar eventuais excessos de circulação de potência reativa pelas linhas, o que implica a redução de custos operacionais pela redução das perdas de energia e um aumento da capacidade de transmissão de potência ativa assegurando os níveis estabelecidos de tensão e fator de potência simultaneamente. A proliferação das cargas não lineares provocou uma mudança nos cenários de estudo dos sistemas elétricos de potência devido aos efeitos nocivos que os harmônicos gerados por elas ocasionam sobre a qualidade da energia elétrica. Considerando este novo cenário, esta tese tem como objetivo geral desenvolver uma ferramenta computacional utilizando técnicas de inteligência computacional apoiada em algoritmos genéticos (AG), para a otimização multiobjetivo da compensação da potência reativa em redes elétricas de distribuição capaz de localizar e dimensionar de forma ótima as unidades de compensação necessárias para obter os melhores benefícios econômicos e a manutenção dos índices de qualidade da energia estabelecidos pelas normas brasileiras. Como Inovação Tecnológica do trabalho a ferramenta computacional desenvolvida permite otimizar a compensação da potência reativa para melhorar do fator de potência em redes de distribuição contaminadas com harmônicos que, diferentemente de métodos anteriores, não só emprega bancos de capacitores, mas também filtros de harmônicos com esse objetivo. Utiliza-se o algoritmo NSGA-II, que determina as soluções ótimas de Pareto para o problema e permite ao especialista determinar as soluções mais efetivas. A proposta para a solução do problema apresenta várias inovações podendo-se destacar que a solução obtida permite determinar a compensação de potência reativa com capacitores em sistemas com certa penetração harmônica, atendendo a normas de qualidade de energia pertinentes, com relação aos níveis de distorção harmônica tolerados.
Resumo:
Essa dissertação de mestrado apresenta um estudo comparativo entre três metodologias baseadas em algoritmos genéticos para ajuste coordenado de estabilizadores de sistemas de potência (ESP). Os procedimentos de ajuste do ESP são formulados como um problema de otimização, a fim de: 1) maximizar o coeficiente de amortecimento mínimo do sistema em malha fechada; 2) maximizar o somatório de todos os coeficientes de amortecimento do sistema em malha fechada; e 3) deslocar os modos eletromecânicos poucos amortecidos ou mal amortecidos para uma zona pré-escrita no plano s. As três metodologias consideram um conjunto de condições de operacionais pré-especificadas. O sistema elétrico foi representado por equações no espaço de estado e as matrizes associadas com a modelagem foram obtidas por meio da versão acadêmica do programa PacDyn. As simulações foram realizadas usando o MATLAB. As metodologias foram aplicadas no conhecido sistema teste New England.
Resumo:
O método de empilhamento sísmico por Superfície de Reflexão Comum (ou empilhamento SRC) produz a simulação de seções com afastamento nulo (NA) a partir dos dados de cobertura múltipla. Para meios 2D, o operador de empilhamento SRC depende de três parâmetros que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0), o raio de curvatura da onda ponto de incidência normal (RNIP) e o raio de curvatura da onda normal (RN). O problema crucial para a implementação do método de empilhamento SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros ótimos associados a cada ponto de amostragem da seção AN a ser simulada. No presente trabalho foi desenvolvido uma nova sequência de processamento para a simulação de seções AN por meio do método de empilhamento SRC. Neste novo algoritmo, a determinação dos três parâmetros ótimos que definem o operador de empilhamento SRC é realizada em três etapas: na primeira etapa são estimados dois parâmetros (β°0 e R°NIP) por meio de uma busca global bidimensional nos dados de cobertura múltipla. Na segunda etapa é usado o valor de β°0 estimado para determinar-se o terceiro parâmetro (R°N) através de uma busca global unidimensional na seção AN resultante da primeira etapa. Em ambas etapas as buscas globais são realizadas aplicando o método de otimização Simulated Annealing (SA). Na terceira etapa são determinados os três parâmetros finais (β0, RNIP e RN) através uma busca local tridimensional aplicando o método de otimização Variable Metric (VM) nos dados de cobertura múltipla. Nesta última etapa é usado o trio de parâmetros (β°0, R°NIP, R°N) estimado nas duas etapas anteriores como aproximação inicial. Com o propósito de simular corretamente os eventos com mergulhos conflitantes, este novo algoritmo prevê a determinação de dois trios de parâmetros associados a pontos de amostragem da seção AN onde há intersecção de eventos. Em outras palavras, nos pontos da seção AN onde dois eventos sísmicos se cruzam são determinados dois trios de parâmetros SRC, os quais serão usados conjuntamente na simulação dos eventos com mergulhos conflitantes. Para avaliar a precisão e eficiência do novo algoritmo, este foi aplicado em dados sintéticos de dois modelos: um com interfaces contínuas e outro com uma interface descontinua. As seções AN simuladas têm elevada razão sinal-ruído e mostram uma clara definição dos eventos refletidos e difratados. A comparação das seções AN simuladas com as suas similares obtidas por modelamento direto mostra uma correta simulação de reflexões e difrações. Além disso, a comparação dos valores dos três parâmetros otimizados com os seus correspondentes valores exatos calculados por modelamento direto revela também um alto grau de precisão. Usando a aproximação hiperbólica dos tempos de trânsito, porém sob a condição de RNIP = RN, foi desenvolvido um novo algoritmo para a simulação de seções AN contendo predominantemente campos de ondas difratados. De forma similar ao algoritmo de empilhamento SRC, este algoritmo denominado empilhamento por Superfícies de Difração Comum (SDC) também usa os métodos de otimização SA e VM para determinar a dupla de parâmetros ótimos (β0, RNIP) que definem o melhor operador de empilhamento SDC. Na primeira etapa utiliza-se o método de otimização SA para determinar os parâmetros iniciais β°0 e R°NIP usando o operador de empilhamento com grande abertura. Na segunda etapa, usando os valores estimados de β°0 e R°NIP, são melhorados as estimativas do parâmetro RNIP por meio da aplicação do algoritmo VM na seção AN resultante da primeira etapa. Na terceira etapa são determinados os melhores valores de β°0 e R°NIP por meio da aplicação do algoritmo VM nos dados de cobertura múltipla. Vale salientar que a aparente repetição de processos tem como efeito a atenuação progressiva dos eventos refletidos. A aplicação do algoritmo de empilhamento SDC em dados sintéticos contendo campos de ondas refletidos e difratados, produz como resultado principal uma seção AN simulada contendo eventos difratados claramente definidos. Como uma aplicação direta deste resultado na interpretação de dados sísmicos, a migração pós-empilhamento em profundidade da seção AN simulada produz uma seção com a localização correta dos pontos difratores associados às descontinuidades do modelo.