11 resultados para Sugar cane burning
em Comissão Econômica para a América Latina e o Caribe (CEPAL)
Resumo:
Includes bibliography
Resumo:
Analiza la estructura de la industria azucarera en Trinidad y Tabago, sus politicas y funciones, sus programas de investigacion y objetivos. Presenta un sumario de los proyectos en curso para 1983- 84 y los efectos de los proyectos de investigacion sobre la productividad de cultivos distintos de los del azucar de cana.
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
This report analyses the agriculture, health and tourism sectors in Jamaica to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Jamaica. It also has the potential to provide essential input for identifying and preparing policies and strategies to help move the Region closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The outcomes from investigating the agriculture sector indicate that for the sugar-cane subsector the harvests under both the A2 and B2 scenarios decrease at first and then increase as the mid-century mark is approached. With respect to the yam subsector the results indicate that the yield of yam will increase from 17.4 to 23.1 tonnes per hectare (33%) under the A2 scenario, and 18.4 to 23.9 (30%) tonnes per hectare under the B2 scenario over the period 2011 to 2050. Similar to the forecasts for yam, the results for escallion suggest that yields will continue to increase to mid-century. Adaptation in the sugar cane sub-sector could involve replanting and irrigation that appear to generate net benefits at the three selected discount rates for the A2 scenario, but only at a discount rate of 1% for the B2 scenario. For yam and escallion, investment in irrigation will earn significant net benefits for both the A2 and B2 scenarios at the three selected rates of discount. It is recommended that if adaptation strategies are part of a package of strategies for improving efficiency and hence enhancing competitiveness, then the yields of each crop can be raised sufficiently to warrant investment in adaptation to climate change. The analysis of the health sector demonstrates the potential for climate change to add a substantial burden to the future health systems in Jamaica, something that that will only compound the country’s vulnerability to other anticipated impacts of climate change. The results clearly show that the incidence of dengue fever will increase if climate change continues unabated, with more cases projected for the A2 scenario than the B2. The models predicted a decrease in the incidence of gastroenteritis and leptospirosis with climate change, indicating that Jamaica will benefit from climate change with a reduction in the number of cases of gastroenteritis and leptospirosis. Due to the long time horizon anticipated for climate change, Jamaica should start implementing adaptation strategies focused on the health sector by promoting an enabling environment, strengthening communities, strengthening the monitoring, surveillance and response systems and integrating adaptation into development plans and actions. Small-island developing states like Jamaica must be proactive in implementing adaptation strategies, which will reduce the risk of climate change. On the global stage the country must continue to agitate for the implementation of the mitigation strategies for developed countries as outlined in the Kyoto protocol. The results regarding the tourism sector suggest that the sector is likely to incur losses due to climate change, the most significant of which is under the A2 scenario. Climatic features, such as temperature and precipitation, will affect the demand for tourism in Jamaica. By 2050 the industry is expected to lose US$ 132.2 million and 106.1 million under the A2 and B2 scenarios, respectively. In addition to changes in the climatic suitability for tourism, climate change is also likely to have important supply-side effects from extreme events and acidification of the ocean. The expected loss from extreme events is projected to be approximately US$ 5.48 billion (A2) and US$ 4.71 billion (B2). Even more devastating is the effect of ocean acidification on the tourism sector. The analysis shows that US$ 7.95 billion (A2) and US$ 7.04 billion is expected to be lost by mid-century. The benefit-cost analysis indicates that most of the adaptation strategies are expected to produce negative net benefits, and it is highly likely that the cost burden would have to be carried by the state. The options that generated positive ratios were: redesigning and retrofitting all relevant tourism facilities, restoring corals and educating the public and developing rescue and evacuation plans. Given the relative importance of tourism to the macroeconomy one possible option is to seek assistance from multilateral funding agencies. It is recommended that the government first undertake a detailed analysis of the vulnerability of each sector and, in particular tourism, to climate change. Further, more realistic socio-economic scenarios should be developed so as to inform future benefit-cost analysis.
Resumo:
This report analyses the agriculture, coastal and human settlements and health sectors in Guyana to assess the potential economic impacts of climate change. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Guyana. It also has the potential to provide essential input for identifying and preparing policies and strategies to help bring the Caribbean sub-region closer to solving problems associated with climate change and attaining national and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050 (agriculture and health sectors) and 2100 (coastal and human settlements sector). An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on three leading sub-sectors namely: sugar-cane, rice-paddy and fisheries. In estimating costs, the sugar sub-sector is projected to experience losses under A2 between US$ 144 million (at 4% discount rate) and US$300 million (1% rate); comparative statistics for rice are US$795 million and US$1577 million, respectively; while for fisheries, the results show that losses range from US$15 million (4% rate) and US$34 million (1% rate). In general, under the B2 scenarios, there are gains for sugar up to 2030 under all three discount rates while for rice the performance is somewhat better with gains realized under all three discount rates up to 2040. For fisheries, gains are forecasted under all three rates up to 2050, following marginal losses to 2020. In terms of the benefit-cost analysis conducted on selected adaptation measures under the A2 scenario, there were net benefits for all three commodities under all three discount rates. For the sugar-cane sub-sector these are: drainage and irrigation upgrade, purchase of new machinery for planting and harvesting, developing and replanting climate tolerant sugar-cane. The rice-paddy sub-sector will benefit from adaptive strategies, which include maintenance of drainage and irrigation systems, research and development, as well as education and training. Adaptation in the fisheries sub-sector must include measures such as, mangrove development and restoration and public education. The analysis of the coastal and human settlements sector has shown that based upon exposed assets and population, SLR can be classified as having the potential to create catastrophic conditions in Guyana. The main contributing factor is the concentration of socioeconomic infrastructure along the coastline in vulnerable areas.
Resumo:
The agricultural sector‟s contribution to GDP and to exports in Jamaica has been declining with the post-war development process that has led to the differentiation of the economy. In 2010, the sector contributed 5.8% of GDP, and 3% to the exports (of goods), but with 36% of employment, it continues to be a major employer. With a little less than half of the population living in rural communities, agricultural activities, and their linkages with other economic activities, continue to play an important role as a source of livelihoods, and by extension, the economic development of the country. Sugar cane cultivation has, with the exception of a couple of decades in the twentieth century when it was superseded by bananas, dominated the agricultural export sector for centuries as the source of the raw materials for the manufacture of sugar for export. In 2005, sugar cane itself accounted for 6.4% of the sector‟s contribution to GDP, and 52% of the contribution of agricultural exports to GDP. Production for the domestic market has long been the larger subsector, organized around the production of root crops, especially yams, vegetables and condiments. To analyse the potential impact of climate change on the agricultural sector, this study selected three important crops for detailed examination. In particular, the study selected sugar cane because of its overwhelming importance to the export subsector of agriculture, and yam and escallion for both their contribution to the domestic subsector as well as the preeminent role yams and escallion play in the economic activities of the communities in the hills of central Jamaica, and the plains of the southwest respectively. As with other studies in this project, the methodology adopted was to compare the estimated values of output on the SRES A2 and B2 Scenarios with the value of output on a “baseline” Business As Usual (BAU), and then estimate the net benefits of investment in the relevant to climate change for the selected crops. The A2 and B2 Scenarios were constructed by applying forecasts of changes in temperature and precipitation generated by INSMET from ECHAM inspired climate models. The BAU “baseline” was a linear projection of the historical trends of yields for each crop. Linear models of yields were estimated for each crop with particular attention to the influence of the two climate variables – temperature and precipitation. These models were then used to forecast yields up to 2050 (table1). These yields were then used to estimate the value of output of the selected crop, as well as the contribution to overall GDP, on each Scenario. The analysis suggested replanting sugar cane with heat resistant varieties, rehabilitating irrigation systems where they existed, and establishing technologically appropriate irrigation systems where they were not for the three selected crops.