5 resultados para Soybean -- Biotechnology
em Comissão Econômica para a América Latina e o Caribe (CEPAL)
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The present study analyzes the potential opportunities and risks involved in employing biotechnologies in the Caribbean region. This information would support developmental policies in the areas of food security, climate change and poverty reduction. The report provides a brief overview of biotechnology development, covering industrial and other microbial biotechnologies, tissue culture and molecular biology. Details of opportunities and risks of biotechnology development are provided for agricultural, industrial, environmental, industrial and medical biotechnology, with information on the global agreements for regulation of genetically modified organisms. The rest of the report analyzes the Caribbean situation. Biotechnology applications, opportunities and risks in the Caribbean are described in detail, with focus on industrial and agricultural biotechnology, and including climate change and constraints to biotechnology development. The report closes with a discussion of the applicability of biotechnology to the region in terms of agricultural, industrial, environmental, medical and marine biotechnology. Conclusions and recommendations are provided. The main conclusion of the study is that there is an urgent need for development and use of biotechnology in the Caribbean, especially in nonagro- biotech sectors, to address food security, climate change, poverty, environmental degradation, among other issues. In so doing, countries must take advantage of the opportunities presented by biotechnology to gain competitive advantage and benefits, while at the same time put measures in place to reduce or remove associated risks. This must be done taking into consideration economic as well as social and cultural issues.
Resumo:
The biotechnology movement in the Caribbean is a fledgling industry that has tremendous potential for development. It focuses on the use of fermentation and enzyme technologies, tissue culture and recombinant DNA (rDNA) technology and is more greatly applied to plant varieties rather than animal species. Tissue culture is by far the most developed type of technology but increasing attention is being paid to rDNA technology. Main areas include application in the agriculture sector but the use in medicine and biology are also being promoted. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment for commercial purposes. The term brings to mind many different things. Some think of developing new types of animals while others anticipate almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed.