3 resultados para Pontages ADN-ADN
em Comissão Econômica para a América Latina e o Caribe (CEPAL)
Resumo:
The Government of Trinidad and Tobago continues to provide support to SMEs in order to enhance their international competitiveness. The increasing effects of globalization and the reality of several trade agreements require that local businesses attain and maintain a level of competitiveness which ensures their continued survival and growth. This report examines in detail the policy environment within which these enterprises operate. It also examines the role of the key implementing agencies such as the BDC and NEDCO for government’s policy on the sector and also the role of the respective line ministries. These organizations strive to deliver value added technical, financial and export promotion services to its clients on a subsidised basis. The services offered reflect five key business areas such as financing, training, technical assistance, trade assistance, business re-engineering, project management and export promotion. In the case of the BDC its services target six sectors: food and beverage, metal processing, leisure marine, including yachting, information and communication technology/electronics, printing and packaging and entertainment. These said sectors are identified by the government, on the basis of a study which was done by TIDCO, for the promotion of a cluster development strategy. In the case of NEDCO it targets the following sectors: art and craft, food and beverages, fashion and fashion accessories, culture and ecotourism, bed and breakfast operations, indigenous entertainment and light manufacturing.
Resumo:
Incluye Bibliografía
Resumo:
The biotechnology movement in the Caribbean is a fledgling industry that has tremendous potential for development. It focuses on the use of fermentation and enzyme technologies, tissue culture and recombinant DNA (rDNA) technology and is more greatly applied to plant varieties rather than animal species. Tissue culture is by far the most developed type of technology but increasing attention is being paid to rDNA technology. Main areas include application in the agriculture sector but the use in medicine and biology are also being promoted. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment for commercial purposes. The term brings to mind many different things. Some think of developing new types of animals while others anticipate almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed.