6 resultados para Hurricane impact

em Comissão Econômica para a América Latina e o Caribe (CEPAL)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This issue of the FAL Bulletin contains the report prepared jointly in September 2005 by three ECLAC divisions (the Division of International Trade and Integration, the Economic Development Division and the Statistics and Economic Projections Division) on the consequences of Hurricane Katrina for the Latin American countries, especially in relation to international trade and macroeconomic impacts in the region. In addition, the web version of this issue includes two tables with data on United States imports from Latin American countries and the proportion that enters through the Port of New Orleans.  

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preface This study was prepared for the Government of Jamaica following the significant physical damage and economic losses that the country sustained as a result of flood rains associated with the development of Hurricane Michelle. The Planning Institute of Jamaica (PIOJ) submitted a request for assistance in undertaking a social, environmental and economic impact assessment to the Economic Commission for Latin America and the Caribbean (ECLAC) on 14 November 2001. ECLAC responded with haste and modified its work plan to accommodate the request. A request for training in the use of the ECLAC Methodology to be delivered to personnel in Jamaica was deferred until the first quarter of 2002, as it was impossible to mount such an initiative at such short notice. This appraisal considers the consequences of the three instances of heavy rainfall that brought on the severe flooding and loss of property and livelihoods. The study was prepared by three members of the ECLAC Natural Disaster Damage Assessment Team over a period of one week in order to comply with the request that it be presented to the Prime Minister on 3 December 2001. The team has endeavoured to complete a workload that would take two weeks with a team of 15 members working assiduously with data already prepared in preliminary form by the national emergency stakeholders. There is need for training in disaster assessment as evidenced by the data collected by the Jamaican officials engaged in the exercise. Their efforts in the future will be more focused and productive after they have received training in the use of the ECLAC Methodology. This study undertakes a sectoral analysis leading to an overall assessment of the damage. It appraises the macroeconomic and social effects and proposes some guidelines for action including mitigating actions subsequent to the devastation caused by the weather system. The team is grateful for the efforts of the Office of Disaster Preparedness and Emergency Management (ODPEM), the associated government ministries and agencies, the Statistical Institute of Jamaica (STATIN), the Planning Institute of Jamaica and the Inter American Development Bank (IDB) for assistance rendered to the team. Indeed, it is the recommendation of the team that STATIN is poised to play a pivotal role in any disaster damage assessment and should be taken on board in that regard. The direct and indirect damages have been assessed in accordance with the methodology developed by ECLAC (1). The results presented are based on the mission's estimates. The study incorporates the information made available to the team and evidence collected in interviews and visits to affected locations. It is estimated that the magnitude of the losses exceeds the country's capacity to address reparations and mitigation without serious dislocation of its development trajectory. The government may wish to approach the international community for assistance in this regard. This appraisal is therefore designed to provide the government and the international community with guidelines for setting national and regional priorities in rehabilitation and reconstruction or resettlement programmes. A purely economic conception of the problem would be limited. A more integrated approach would have a human face and consider the alleviation of human suffering in the affected areas while attending to the economic and fiscal fallout of the disaster. Questions of improved physical planning, watershed management, early warning, emergency response and structural preparedness for evacuation and sheltering the vulnerable population are seen as important considerations for the post disaster phase. Special attention and priority should be placed on including sustainability and increased governance criteria in making social and productive investments, and on allocating resources to the reinforcing and retrofitting of vulnerable infrastructure, basic lifelines and services as part of the reconstruction and rehabilitation strategy. The Jamaican society and government face the opportunity of undertaking action with the benefit of revised paradigms, embarking on institutional, legal and structural reforms to reduce economic, social and environmental vulnerability. The history of flood devastation in the very areas of Portland and St. Mary shows a recurrence of flooding. Accounts of flooding from the earliest recorded accounts pertaining to 1837 are available. Recurrences in 1937, 1940, 1943 and 2001 indicate an ever-present probability of recurrence of similar events. The Government may wish to consider the probable consequences of a part of its population living in flood plains and address its position vis-à­¶is land use and the probability of yet another recurrence of flood rains. (1) ECLAC/IDNDR, Manual for estimating the Socio-Economic Effects of Natural Disasters, May,1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.