14 resultados para Brief Psychotherapy

em Comissão Econômica para a América Latina e o Caribe (CEPAL)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El documento contiene una breve resena sobre las relaciones entre el IDRC y CELADE con miras al desarrollo del sistema latinoamericano de documentacion en poblacion (DOCPAL)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caribbean policymakers are faced with special challenges from climate change and these are related to the uncertainties inherent in future climate projections and the complex linkages among climate change, physical and biological systems and socioeconomic sectors. The impacts of climate change threaten development in the Caribbean and may well erode previous gains in development as evidenced by the increased incidence of climate migrants internationally. This brief which is based on a recent study conducted by the Economic Commission for Latin America and the Caribbean (LC/CAR/L.395)1 provides a synthesis of the assessment of the economic and social impacts of climate change on the coastal and marine sector in the Caribbean which were undertaken. It provides Caribbean policymakers with cutting-edge information on the region’s vulnerability and encourages the development of adaptation strategies informed by both local experience and expert knowledge. It proceeds from an acknowledgement that the unique combination of natural resources, ecosystems, economic activities, and human population settlements of the Caribbean will not be immune to the impacts of climate change, and local communities, countries and the subregion as a whole need to plan for, and adapt to, these effects. Climate and extreme weather hazards related to the coastal and marine sector encompass the distinct but related factors of sea level rise, increasing coastal water temperatures, tropical storms and hurricanes. Potential vulnerabilities for coastal zones include increased shoreline erosion leading to alteration of the coastline, loss of coastal wetlands, and changes in the abundance and diversity of fish and other marine populations. The study examines four key themes in the analysis: climate, vulnerability, economic and social costs associated with climate change impacts, and adaptive measures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biotechnology movement in the Caribbean is a fledgling industry that has tremendous potential for development. It focuses on the use of fermentation and enzyme technologies, tissue culture and recombinant DNA (rDNA) technology and is more greatly applied to plant varieties rather than animal species. Tissue culture is by far the most developed type of technology but increasing attention is being paid to rDNA technology. Main areas include application in the agriculture sector but the use in medicine and biology are also being promoted. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment for commercial purposes. The term brings to mind many different things. Some think of developing new types of animals while others anticipate almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed.