543 resultados para Economic assistance Caribbean area


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This edition puts focus on recent economic performance and policies in the Caribbean, acknowledging that ongoing challenges notwithstanding, macroeconomic indicators across the subregion are improving. Four articles will address respectively the prospects for growth, the fiscal situation, the performance of balance of payments and monetary policy and their impact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Caribbean policymakers are faced with special challenges from climate change and these are related to the uncertainties inherent in future climate projections and the complex linkages among climate change, physical and biological systems and socioeconomic sectors. The impacts of climate change threaten development in the Caribbean and may well erode previous gains in development as evidenced by the increased incidence of climate migrants internationally. This brief which is based on a recent study conducted by the Economic Commission for Latin America and the Caribbean (LC/CAR/L.395)1 provides a synthesis of the assessment of the economic and social impacts of climate change on the coastal and marine sector in the Caribbean which were undertaken. It provides Caribbean policymakers with cutting-edge information on the region’s vulnerability and encourages the development of adaptation strategies informed by both local experience and expert knowledge. It proceeds from an acknowledgement that the unique combination of natural resources, ecosystems, economic activities, and human population settlements of the Caribbean will not be immune to the impacts of climate change, and local communities, countries and the subregion as a whole need to plan for, and adapt to, these effects. Climate and extreme weather hazards related to the coastal and marine sector encompass the distinct but related factors of sea level rise, increasing coastal water temperatures, tropical storms and hurricanes. Potential vulnerabilities for coastal zones include increased shoreline erosion leading to alteration of the coastline, loss of coastal wetlands, and changes in the abundance and diversity of fish and other marine populations. The study examines four key themes in the analysis: climate, vulnerability, economic and social costs associated with climate change impacts, and adaptive measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Jamaica to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Jamaica. It also has the potential to provide essential input for identifying and preparing policies and strategies to help move the Region closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The outcomes from investigating the agriculture sector indicate that for the sugar-cane subsector the harvests under both the A2 and B2 scenarios decrease at first and then increase as the mid-century mark is approached. With respect to the yam subsector the results indicate that the yield of yam will increase from 17.4 to 23.1 tonnes per hectare (33%) under the A2 scenario, and 18.4 to 23.9 (30%) tonnes per hectare under the B2 scenario over the period 2011 to 2050. Similar to the forecasts for yam, the results for escallion suggest that yields will continue to increase to mid-century. Adaptation in the sugar cane sub-sector could involve replanting and irrigation that appear to generate net benefits at the three selected discount rates for the A2 scenario, but only at a discount rate of 1% for the B2 scenario. For yam and escallion, investment in irrigation will earn significant net benefits for both the A2 and B2 scenarios at the three selected rates of discount. It is recommended that if adaptation strategies are part of a package of strategies for improving efficiency and hence enhancing competitiveness, then the yields of each crop can be raised sufficiently to warrant investment in adaptation to climate change. The analysis of the health sector demonstrates the potential for climate change to add a substantial burden to the future health systems in Jamaica, something that that will only compound the country’s vulnerability to other anticipated impacts of climate change. The results clearly show that the incidence of dengue fever will increase if climate change continues unabated, with more cases projected for the A2 scenario than the B2. The models predicted a decrease in the incidence of gastroenteritis and leptospirosis with climate change, indicating that Jamaica will benefit from climate change with a reduction in the number of cases of gastroenteritis and leptospirosis. Due to the long time horizon anticipated for climate change, Jamaica should start implementing adaptation strategies focused on the health sector by promoting an enabling environment, strengthening communities, strengthening the monitoring, surveillance and response systems and integrating adaptation into development plans and actions. Small-island developing states like Jamaica must be proactive in implementing adaptation strategies, which will reduce the risk of climate change. On the global stage the country must continue to agitate for the implementation of the mitigation strategies for developed countries as outlined in the Kyoto protocol. The results regarding the tourism sector suggest that the sector is likely to incur losses due to climate change, the most significant of which is under the A2 scenario. Climatic features, such as temperature and precipitation, will affect the demand for tourism in Jamaica. By 2050 the industry is expected to lose US$ 132.2 million and 106.1 million under the A2 and B2 scenarios, respectively. In addition to changes in the climatic suitability for tourism, climate change is also likely to have important supply-side effects from extreme events and acidification of the ocean. The expected loss from extreme events is projected to be approximately US$ 5.48 billion (A2) and US$ 4.71 billion (B2). Even more devastating is the effect of ocean acidification on the tourism sector. The analysis shows that US$ 7.95 billion (A2) and US$ 7.04 billion is expected to be lost by mid-century. The benefit-cost analysis indicates that most of the adaptation strategies are expected to produce negative net benefits, and it is highly likely that the cost burden would have to be carried by the state. The options that generated positive ratios were: redesigning and retrofitting all relevant tourism facilities, restoring corals and educating the public and developing rescue and evacuation plans. Given the relative importance of tourism to the macroeconomy one possible option is to seek assistance from multilateral funding agencies. It is recommended that the government first undertake a detailed analysis of the vulnerability of each sector and, in particular tourism, to climate change. Further, more realistic socio-economic scenarios should be developed so as to inform future benefit-cost analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The economic impact of climate change on root crop, fisheries and vegetable production for Trinidad and Tobago under the A2 and B2 scenarios were modeled, relative to a baseline ―no climate change‖ case, where the mean temperature and rainfall for a base period of 1980 – 2000 was assumed for the years up to 2050. Production functions were used, using ARMA specifications to correct for serial autocorrelation. For the A2 scenarios, rainfall is expected to fall by approximately 10% relative to the baseline case in the 2020s, but is expected to rise thereafter, until by the 2040s rainfall rises slightly above the mean for the baseline case. For the B2 scenario, rainfall rose slightly above the mean for the baseline case in the current decade, but falls steadily thereafter to approximately 15% by the 2040s. Over the same period, temperature is expected to increase by 1.34C and 1.37C under A2 and B2 respectively. It is expected that any further increase in rainfall should have a deleterious effect on root crop production as a whole, since the above mentioned crops represent the majority of the root crops included in the study. Further expected increases in temperature will result in the ambient temperature being very close to the optimal end of the range for most of these crops. By 2050, the value of yield cumulative losses (2008$) for root crops is expected to be approximately 248.8 million USD under the A2 scenario and approximately 239.4 million USD under the B2 scenario. Relative to the 2005 catch for fish, there will be a decrease in catch potential of 10 - 20% by 2050 relative to 2005 catch potentials, other things remaining constant. By 2050 under the A2 and B2 scenarios, losses in real terms were estimated to be 160.2 million USD and 80.1 million USD respectively, at a 1% discount rate. For vegetables, the mean rainfall exceeds the optimal rainfall range for sweet peppers, hot peppers and melongene. However, while the optimal rainfall level for tomatoes is 3000mm/yr, other vegetables such as sweet peppers, hot peppers and ochroes have very low rainfall requirements (as low as 300 mm/yr). Therefore it is expected that any further decrease in rainfall should have a mixed effect on individual vegetable production. It is expected that any further increase in temperature should have a mixed effect on individual vegetable production, though model results indicated that as a group, an increase in temperature should have a positive impact on vegetable production. By 2050, the value of yield cumulative gains (2008$) for vegetables is expected to be approximately 54.9 million USD under the A2 scenario and approximately 49.1 million USD under the B2 scenario, given a 1% discount rate. For root crops, fisheries and vegetables combined, the cumulative loss under A2 is calculated as approximately 352.8 million USD and approximately 270.8 million USD under B2 by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios respectively by 2050. Sea Level Rise (SLR) by 2050 is estimated to be 0.255 m under A2 and 0.215 m under B2. GIS estimation indicated that for a 0.255 m sea level rise, combined with a 0.5 m high tide, there would be no permanent inundation of agricultural land in Trinidad. The total inundation area is 1.18 km2. This occurs only in the Caroni Watershed, on the western coast of Trinidad, and the areas are outside the Caroni Swamp. Even with an additional rise of 0.5 m to simulate a high rainfall event, the estimated inundated area is 4.67 km2, but with no permanent inundation, though likely to be subject to flooding. Based on eleven (11) evaluation criteria, the top potential adaptation options were identified: 1. Use of water saving irrigation systems and water management systems e.g. drip irrigation; 2. Mainstream climate change issues into agricultural management; 3. Repair/maintain existing dams; 4. Alter crop calendar for short-term crops; 5. Adopt improved technologies for soil conservation; 6. Establish systems of food storage; 7. Promote water conservation – install on-farm water harvesting off roof tops; 8. Design and implement holistic water management plans for all competing uses; 9. Build on- farm water storage (ponds and tanks); 10. Agricultural drainage; and 11. Installation of greenhouses. The most attractive adaptation options, based on the Benefit-Cost Ratio are: (1) Build on- farm water storage such as ponds and tanks (2) Mainstreaming climate change issues into agricultural management and (3) Water Harvesting. However, the options with the highest net benefits are, (in order of priority): (1) Build on- farm water storage such as ponds and tanks, (2) Mainstreaming climate change issues into agricultural management and (3) Use of drip irrigation. Based on the area burnt in Trinidad and Tobago between 2005 and 2009, the average annual loss due to fires is 1717.3 ha. At US$17.41 per carbon credit, this implies that for the total land lost to forest fires on average each year, the opportunity cost of carbon credit revenue is 74.3 million USD. If a teak reforestation programme is undertaken in Trinidad and Tobago, the net benefit of reforestation under a carbon credit programme would be 69 million USD cumulatively to 2050.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The United Nations Economic Commission for Latin America and the Caribbean (ECLAC) is seeking to provide support to the Governments of Guyana, Jamaica and Barbados in researching the potential for employing renewable energy technologies to mitigate climate change. This exercise involves the study of different types of renewable technologies and mitigative strategies, with the aim of making recommendations to the governments on the development of their renewable energy sector. The recommendations may also assist in achieving their long-term objectives of reducing poverty and promoting healthy economies and sustainable livelihoods in keeping with the Millennium Development Goals. Guyana, Jamaica and Barbados each face common and specific challenges in their efforts to adequately define and implement their energy and climate policies, in a way that allows them to contribute to the mitigation effort against climate change, while promoting sustainable development within their countries. Each country has demonstrated an understanding of the global and national challenges pertaining to climate change. They have attempted to address these challenges through policies and various programmes implemented by local and international agencies. Documented and undocumented policies have sought to outline the directions to be taken by each territory as they seek to deploy new technologies to address issues related to energy and the environment. While all territories have sought to deploy multiple alternate and renewable technologies simultaneously, it is clear that, given their sizes and resource limitations, no one territory can achieve excellence in all these areas. Guyana has demonstrated the greatest potential for hydro energy and should pursue it as their main area of expertise. The country also has an additional major strategy that includes forest credits and the Reduced Emissions from Deforestation and Degradation (REDD) programme. This approach will be brought to the negotiation table in the upcoming climate change meeting in Copenhagen in December 2009. Of the three countries, Jamaica has the only active significant wind farm deployment, while Barbados has a long tradition in solar energy. Each country might then supplement their energy and fuel mix with other energy and fuel sources and draw from the experience of other countries. Given the synergies that might accrue from adopting a regional approach, the Caribbean Community Climate Change Centre (CCCCC) might be well positioned to play a coordinating role. This focus on renewable energy and biofuels should yield good, long-term results as it relates to mitigation against climate change, and good, short- and medium-term results as it relates to the development of sustainable economies. Each country might also achieve energy security, reduced oil dependence, significant reduction in harmful emissions and better foreign exchange management if they pursue good policies and implementation practices. Human and financial resources are critical to the success of planned interventions, and it will be necessary to successfully mobilize these resources in order to be effective in executing key plans.