61 resultados para library economic impact research
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty alleviation, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of St. Kitts and Nevis (SKN). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations for possible adaptation strategies and costs and benefits of adaptation.
Resumo:
.--I. Introduction.--II. Literature review regarding climate change impacts on international transportation.--III. Economy of the Caribbean subregion and Monserrat.--IV. The international transportaion system in the Caribbean and in Monserrat.--V. Vulnerabilities of international transport system in Monserrat to climate change.--VI. Modelling.-- VII. Economic impact analysis of climate chage on the international transport.-- VIII. Approaches to mitigation and adaptation in the air and sea transportation sectors.-- IX. Conclusions
Resumo:
Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty reduction, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of the British Virgin Islands (BVI). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations of possible adaptation strategies and costs and benefits of adaptation. A multi-pronged approach is employed in valuing the marine and coastal sector. Direct use and indirect use values are estimated. The amount of economic activity an ecosystem service generates in the local economy underpins estimation of direct use values. Tourism and fisheries are valued using the framework developed by the World Resources Institute. Biodiversity is valued in terms of the ecological functions it provides, such as climate regulation, shoreline protection, water supply erosion control and sediment retention, and biological control, among others. Estimates of future losses to the coastal zone from climate change are determined by considering: (1) the effect of sea level rise on coastal lands; and (2) the effect of a rise in sea surface temperature (SST) on coastal waters. Discount rates of 1%, 2% and 4% are employed to analyse all loss estimates in present value terms. The overall value for the coastal and marine sector is USD $1,606 million (mn). This is almost 2% larger than BVI’s 2008 GDP. Tourism and recreation comprise almost two-thirds of the value of the sector. By 2100, the effects of climate change on coastal lands are projected to be $3,988.6 mn, and $2,832.9 mn under the A2 and B2 scenarios respectively. In present value terms, if A2 occurs, losses range from $108.1-$1,596.8 mn and if B2 occurs, losses range from $74.1-$1,094.1 mn, depending on the discount rate used. Estimated costs of a rise in SST in 2050 indicate that they vary between $1,178.0 and $1,884.8 mn. Assuming a discount rate of 4%, losses range from $226.6 mn for the B2 scenario to $363.0 mn for the A2 scenario. If a discount rate of 1% is assumed, estimated losses are much greater, ranging from $775.6-$1,241.0 mn. Factoring in projected climate change impacts, the net value of the coastal and marine sector suggests that the costs of climate change significantly reduce the value of the sector, particularly under the A2 and B2 climate change scenarios for discount rates of 1% and 2%. In contrast, the sector has a large, positive, though declining trajectory, for all years when a 4% discount rate is employed. Since the BVI emits minimal greenhouse gases, but will be greatly affected by climate change, the report focuses on adaptation as opposed to mitigation strategies. The options shortlisted are: (1) enhancing monitoring of all coastal waters to provide early warning alerts of bleaching and other marine events; (2) introducing artificial reefs or fish-aggregating devices; (3) introducing alternative tourist attractions; (4) providing retraining for displaced tourism workers; and (5) revising policies related to financing national tourism offices to accommodate the new climatic realities. All adaptation options considered are quite justifiable in national terms; each had benefit-cost ratios greater than 1.
Resumo:
This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Montserrat. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009, there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. Besides temperature, there is also the threat of wind speeds. Since the early 20th century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Montserrat, the estimated damage from four windstorms (including hurricanes) affecting the island was US$260 million or almost five times 2009 gross domestic product (GDP). Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. The report attempted to quantify the likely effects of the changes in the climatic factors mentioned above. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations as well as those under two likely climate scenarios: A2 and B2. The results suggest that under both scenarios, the island’s key tourism climatic features will likely decline and therefore negatively impact on the destination experience of visitors. Including this tourism climatic index in a tourism demand model suggests that this would translate into losses of around 145% of GDP. As it relates to coral reefs, the value of the damage due to the loss of coral reefs was estimated at 7.6 times GDP, while the damage due to land loss for the tourism industry was 45% of GDP. The total cost of climate change for the tourism industry was therefore projected to be 9.6 times 2009 GDP over a 40-year horizon. Given the potential for significant damage to the industry, a large number of potential adaptation measures were considered. Out of these, a short-list of 9 potential options was selected using 10 evaluation criteria. These included: (a) Increasing recommended design wind speeds for new tourism-related structures; (b) Construction of water storage tanks; (c) Irrigation network that allows for the recycling of waste water; (d) Enhanced reef monitoring systems to provide early warning alerts of bleaching events; (e) Deployment of artificial reefs and fish-aggregating devices; (f) Developing national evacuation and rescue plans; (g) Introduction of alternative attractions; (h) Providing re-training for displaced tourism workers, and; (i) Revised policies related to financing national tourism offices to accommodate the new climatic realities Using cost-benefit analysis, three options were put forward as being financially viable and ready for immediate implementation: (a) Increase recommended design speeds for new tourism-related structures; (b) Enhance reef monitoring systems to provide early warning alerts of bleaching events, and; (c) Deploy artificial reefs or fish-aggregating devices. While these options had positive benefit cost ratios, other options were also recommended based on their non-tangible benefits: an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climatic realities.
Resumo:
This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Saint Lucia. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009 there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. In addition to temperature, there is also the threat of increased wind speeds. Since the early twentieth century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Saint Lucia, the estimated damage from 12 windstorms (including hurricanes) affecting the island was US$1 billion or about 106% of 2009 GDP. Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. This report attempted to quantify the likely effects of the changes in the climatic factors mentioned above on the economy of Saint Lucia. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations, as well as those under two, likely, Special Report on Emissions Scenarios (SRES) climate scenarios: A2 and B2.
Resumo:
In this study, an attempt is made to assess the economic impact of climate change on Aruba. This study has three main objectives. The first is to examine the factors that influence the demand and supply of tourism in Aruba. The second is to forecast the cost of climate change to the tourism sector until 2050 under the A2 and B2 climate scenarios with the Business as Usual (BAU) as a comparator climate scenario, and the third is to estimate the cost of adaptation and mitigation strategies that can be undertaken by Aruba to address climate change in the tourism sector.
Resumo:
In this study, an attempt is made to estimate the economic impact of climate change on the tourism sector in the (former) Netherlands Antilles. There are three main objectives in this study. The first is to examine the factors that influence the demand and supply of tourism in Netherlands Antilles. The second is to forecast the cost of climate change to the tourism sector until 2050 under the A2 and B2 climate scenarios with the (Business as Usual) as a comparator climate scenario, and the third is to estimate the cost of adaptation and mitigation strategies that can be undertaken by the tourism sector in the Netherlands Antilles to address climate change.
Resumo:
The Economic Commission for Latin America and the Caribbean (ECLAC) jointly with the World Program of Food (WFP) and recognized experts of the region developed a methodology that, using secondary information, estimate the opportunity cost derived from undernutrition. This methodology has been successfully applied in Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama and the Dominican Republic, where the cost of undernutrition was estimated at 6.7 billion dollars in 2004. The present study covers four countries in South America: Bolivia, Ecuador, Paraguay and Peru. The results indicate that the cost of the malnutrition in these countries reached 4.3 billion dollars in 2005, which is equivalent to 3.3 per cent of the GDP of these countries. The results strongly point out that child undernutrition is not only a problem of health or an unacceptable situation ethically, but it is a national problem, given the enormous social costs and the loss of opportunities that it imposes on the national economy.
Resumo:
This document presents the results derived from the analyses of the cost of undernutrition in Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama and the Dominican Republic. The study shows that not only are the effects reported valid for the countries of Central America and the Dominican Republic, but the resultant economic impact is also significant, representing between 1.7% and 11.4% of GDP. In this regard, productivity losses as a consequence of the higher death rate and the lower level of education account for 90% of the costs. Thus, in addition to the ethical imperative, eradicating undernutrition would yield benefits as well. Therefore, any programme that is effective in reducing the prevalence of this problem will have an impact on people's quality of life, and will also represent major savings for society. The greater the problem, the greater the challenge, but the greater the benefits as well, especially in terms of countries' production capacity.
Resumo:
Between 2008 and 2011, the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) worked on a project to assess the economic impact of climate change in the Caribbean. The overall aim is to prepare the Caribbean region to better respond to climate change, while fostering a regional approach to reducing carbon emissions by 2050. This study updates the report on the impact of climate change on the macroeconomy at the regional level and will focus on 9 countries: Aruba, the Bahamas, Barbados, Curacao, the Dominican Republic, Montserrat, Jamaica, Saint Lucia and Trinidad and Tobago.
Resumo:
Includes bibliography
Resumo:
Preface This study was prepared for the Government of Jamaica following the significant physical damage and economic losses that the country sustained as a result of flood rains associated with the development of Hurricane Michelle. The Planning Institute of Jamaica (PIOJ) submitted a request for assistance in undertaking a social, environmental and economic impact assessment to the Economic Commission for Latin America and the Caribbean (ECLAC) on 14 November 2001. ECLAC responded with haste and modified its work plan to accommodate the request. A request for training in the use of the ECLAC Methodology to be delivered to personnel in Jamaica was deferred until the first quarter of 2002, as it was impossible to mount such an initiative at such short notice. This appraisal considers the consequences of the three instances of heavy rainfall that brought on the severe flooding and loss of property and livelihoods. The study was prepared by three members of the ECLAC Natural Disaster Damage Assessment Team over a period of one week in order to comply with the request that it be presented to the Prime Minister on 3 December 2001. The team has endeavoured to complete a workload that would take two weeks with a team of 15 members working assiduously with data already prepared in preliminary form by the national emergency stakeholders. There is need for training in disaster assessment as evidenced by the data collected by the Jamaican officials engaged in the exercise. Their efforts in the future will be more focused and productive after they have received training in the use of the ECLAC Methodology. This study undertakes a sectoral analysis leading to an overall assessment of the damage. It appraises the macroeconomic and social effects and proposes some guidelines for action including mitigating actions subsequent to the devastation caused by the weather system. The team is grateful for the efforts of the Office of Disaster Preparedness and Emergency Management (ODPEM), the associated government ministries and agencies, the Statistical Institute of Jamaica (STATIN), the Planning Institute of Jamaica and the Inter American Development Bank (IDB) for assistance rendered to the team. Indeed, it is the recommendation of the team that STATIN is poised to play a pivotal role in any disaster damage assessment and should be taken on board in that regard. The direct and indirect damages have been assessed in accordance with the methodology developed by ECLAC (1). The results presented are based on the mission's estimates. The study incorporates the information made available to the team and evidence collected in interviews and visits to affected locations. It is estimated that the magnitude of the losses exceeds the country's capacity to address reparations and mitigation without serious dislocation of its development trajectory. The government may wish to approach the international community for assistance in this regard. This appraisal is therefore designed to provide the government and the international community with guidelines for setting national and regional priorities in rehabilitation and reconstruction or resettlement programmes. A purely economic conception of the problem would be limited. A more integrated approach would have a human face and consider the alleviation of human suffering in the affected areas while attending to the economic and fiscal fallout of the disaster. Questions of improved physical planning, watershed management, early warning, emergency response and structural preparedness for evacuation and sheltering the vulnerable population are seen as important considerations for the post disaster phase. Special attention and priority should be placed on including sustainability and increased governance criteria in making social and productive investments, and on allocating resources to the reinforcing and retrofitting of vulnerable infrastructure, basic lifelines and services as part of the reconstruction and rehabilitation strategy. The Jamaican society and government face the opportunity of undertaking action with the benefit of revised paradigms, embarking on institutional, legal and structural reforms to reduce economic, social and environmental vulnerability. The history of flood devastation in the very areas of Portland and St. Mary shows a recurrence of flooding. Accounts of flooding from the earliest recorded accounts pertaining to 1837 are available. Recurrences in 1937, 1940, 1943 and 2001 indicate an ever-present probability of recurrence of similar events. The Government may wish to consider the probable consequences of a part of its population living in flood plains and address its position vis-à¶is land use and the probability of yet another recurrence of flood rains. (1) ECLAC/IDNDR, Manual for estimating the Socio-Economic Effects of Natural Disasters, May,1999.