35 resultados para damage assessment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report analyses the agriculture, energy, and health sectors in Trinidad and Tobago to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Trinidad and Tobago. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on root crops, green vegetables and fisheries. For these sectors combined, the cumulative loss under the A2 scenario is calculated as approximately B$2.24 and approximately B$1.72 under the B2 scenario by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios, respectively. Given the potential for significant damage to the agriculture sector a large number of potential adaptation measures were considered. Out of these a short-list of 10 potential options were selected by applying 10 evaluation criteria. All of the adaptation strategies showed positive benefits. The analysis indicate that the options with the highest net benefits are: (1) Building on-farm water storage, (2) Mainstreaming climate change issues into agricultural management and (3) Using drip irrigation. Other attractive options include water harvesting. The policy decisions by governments should include these assessments, the omitted intangible benefits, as well as the provision of other social goals such as employment. The analysis of the energy sector has shown that the economic impact of climate change during 2011-2050 is similar under the A2 (US$142.88 million) and B2 (US$134.83 million) scenarios with A2 scenario having a slightly higher cost (0.737% of 2009 GDP) than the B2 scenario (0.695% of 2009 GDP) for the period. On the supply side, analyses indicate that Trinidad and Tobago’s energy sector will be susceptible to the climate change policies of major energy-importing countries (the United States of America and China), and especially to their renewable energy strategies. Implementation of foreign oil substitution policy by the United States of America will result in a decline in Trinidad and Tobago’s Liquefied Natural Gas (LNG) export (equivalent to 2.2% reduction in 2009 GDP) unless an alternative market is secured for the lost United States of America market. China, with its rapid economic growth and the highest population in the world, offers a potential replacement market for Trinidad and Tobago’s LNG export. In this context the A2 scenario will offer the best option for Trinidad and Tobago’s energy sector. The cost-benefit analysis undertaken on selected adaptation strategies reveal that the benefit-cost ratio of replacing electric water heaters with solar water heaters is the most cost-effective. It was also found that the introduction of Compact Fluorescent Light (CFL) and Variable Refrigerant Volume (VRV) air conditioners surpasses the projected cost of increased electricity consumption due to climate change, and provides an economic rationale for the adoption of these adaptation options even in a situation of increased electricity consumption occasioned by climate change. Finally, the conversion of motor fleets to Compressed Natural Gas (CNG) is a cost-effective adaptation option for the transport sector, although it has a high initial cost of implementation and the highest per capita among the four adaptation options evaluated. To investigate the effect of climate change on the health sector dengue fever, leptospirosis, food borne illnesses, and gastroenteritis were examined. The total number of new dengue cases for the period 2008 to 2050 was 204,786 for BAU, 153,725 for A2 and 131,890 for the B2 scenario. With regard to the results for leptospirosis, A2 and B2 seem to be following a similar path with total number of new cases in the A2 scenario being 9,727 and 9,218 cases under the B2 scenario. Although incidence levels in the BAU scenario coincided with those of A2 and B2 prior to 2020, they are somewhat lower post 2020. A similar picture emerges for the scenarios as they relate to food-borne illnesses and to gastroenteritis. Specifically for food-borne illnesses, the BAU scenario recorded 27,537 cases, the A2 recorded 28,568 cases and the B2 recorded 28,679 cases. The focus on the selected sources of morbidity in the health sector has highlighted the fact that the vulnerability of the country’s health sector to climate change does not depend solely on exogenously derived impacts, but also on the behaviour and practices among the population. It is clear that the vulnerability which became evident in the analysis of the impacts on dengue fever, leptospirosis and food-borne illnesses is not restricted solely to climate or other external factors. The most important adaptation strategy being recommended targets lifestyle, behaviour and attitude changes. The population needs to be encouraged to alter their behaviours and practices so as to minimise their exposure to harmful outcomes as it relates to the incidence of these diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Montserrat. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009, there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. Besides temperature, there is also the threat of wind speeds. Since the early 20th century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Montserrat, the estimated damage from four windstorms (including hurricanes) affecting the island was US$260 million or almost five times 2009 gross domestic product (GDP). Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. The report attempted to quantify the likely effects of the changes in the climatic factors mentioned above. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations as well as those under two likely climate scenarios: A2 and B2. The results suggest that under both scenarios, the island’s key tourism climatic features will likely decline and therefore negatively impact on the destination experience of visitors. Including this tourism climatic index in a tourism demand model suggests that this would translate into losses of around 145% of GDP. As it relates to coral reefs, the value of the damage due to the loss of coral reefs was estimated at 7.6 times GDP, while the damage due to land loss for the tourism industry was 45% of GDP. The total cost of climate change for the tourism industry was therefore projected to be 9.6 times 2009 GDP over a 40-year horizon. Given the potential for significant damage to the industry, a large number of potential adaptation measures were considered. Out of these, a short-list of 9 potential options was selected using 10 evaluation criteria. These included: (a) Increasing recommended design wind speeds for new tourism-related structures; (b) Construction of water storage tanks; (c) Irrigation network that allows for the recycling of waste water; (d) Enhanced reef monitoring systems to provide early warning alerts of bleaching events; (e) Deployment of artificial reefs and fish-aggregating devices; (f) Developing national evacuation and rescue plans; (g) Introduction of alternative attractions; (h) Providing re-training for displaced tourism workers, and; (i) Revised policies related to financing national tourism offices to accommodate the new climatic realities Using cost-benefit analysis, three options were put forward as being financially viable and ready for immediate implementation: (a) Increase recommended design speeds for new tourism-related structures; (b) Enhance reef monitoring systems to provide early warning alerts of bleaching events, and; (c) Deploy artificial reefs or fish-aggregating devices. While these options had positive benefit cost ratios, other options were also recommended based on their non-tangible benefits: an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climatic realities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Saint Lucia. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009 there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. In addition to temperature, there is also the threat of increased wind speeds. Since the early twentieth century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Saint Lucia, the estimated damage from 12 windstorms (including hurricanes) affecting the island was US$1 billion or about 106% of 2009 GDP. Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. This report attempted to quantify the likely effects of the changes in the climatic factors mentioned above on the economy of Saint Lucia. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations, as well as those under two, likely, Special Report on Emissions Scenarios (SRES) climate scenarios: A2 and B2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work is to review ECLAC’s experience in assessing the economic and social impact of disasters. Toward that end, the database established according to assessment reports is described and the patterns of sectoral damage and losses from different types of events are defined.