19 resultados para renewable energy engineering
Resumo:
Includes bibliography
Resumo:
The present report assesses the economic and social impacts of climate change on the energy sector in Antigua and Barbuda, the Bahamas, Barbados, Belize, Cuba, Dominica, the Dominican Republic, Haiti, Grenada, Guyana, Jamaica, Saint Kitts and Nevis, Saint Vincent and the Grenadines, Saint Lucia, Suriname, and Trinidad and Tobago. In the study, the Artificial Neural Network methodology was employed to model the relationship between climate change and energy demand. The viability of the actions proposed were assessed using cost benefit analyses based on models from the National Renewable Energy Laboratory (NREL) of the United States of America.
Resumo:
This report analyses the agriculture, energy, and health sectors in Trinidad and Tobago to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Trinidad and Tobago. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on root crops, green vegetables and fisheries. For these sectors combined, the cumulative loss under the A2 scenario is calculated as approximately B$2.24 and approximately B$1.72 under the B2 scenario by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios, respectively. Given the potential for significant damage to the agriculture sector a large number of potential adaptation measures were considered. Out of these a short-list of 10 potential options were selected by applying 10 evaluation criteria. All of the adaptation strategies showed positive benefits. The analysis indicate that the options with the highest net benefits are: (1) Building on-farm water storage, (2) Mainstreaming climate change issues into agricultural management and (3) Using drip irrigation. Other attractive options include water harvesting. The policy decisions by governments should include these assessments, the omitted intangible benefits, as well as the provision of other social goals such as employment. The analysis of the energy sector has shown that the economic impact of climate change during 2011-2050 is similar under the A2 (US$142.88 million) and B2 (US$134.83 million) scenarios with A2 scenario having a slightly higher cost (0.737% of 2009 GDP) than the B2 scenario (0.695% of 2009 GDP) for the period. On the supply side, analyses indicate that Trinidad and Tobago’s energy sector will be susceptible to the climate change policies of major energy-importing countries (the United States of America and China), and especially to their renewable energy strategies. Implementation of foreign oil substitution policy by the United States of America will result in a decline in Trinidad and Tobago’s Liquefied Natural Gas (LNG) export (equivalent to 2.2% reduction in 2009 GDP) unless an alternative market is secured for the lost United States of America market. China, with its rapid economic growth and the highest population in the world, offers a potential replacement market for Trinidad and Tobago’s LNG export. In this context the A2 scenario will offer the best option for Trinidad and Tobago’s energy sector. The cost-benefit analysis undertaken on selected adaptation strategies reveal that the benefit-cost ratio of replacing electric water heaters with solar water heaters is the most cost-effective. It was also found that the introduction of Compact Fluorescent Light (CFL) and Variable Refrigerant Volume (VRV) air conditioners surpasses the projected cost of increased electricity consumption due to climate change, and provides an economic rationale for the adoption of these adaptation options even in a situation of increased electricity consumption occasioned by climate change. Finally, the conversion of motor fleets to Compressed Natural Gas (CNG) is a cost-effective adaptation option for the transport sector, although it has a high initial cost of implementation and the highest per capita among the four adaptation options evaluated. To investigate the effect of climate change on the health sector dengue fever, leptospirosis, food borne illnesses, and gastroenteritis were examined. The total number of new dengue cases for the period 2008 to 2050 was 204,786 for BAU, 153,725 for A2 and 131,890 for the B2 scenario. With regard to the results for leptospirosis, A2 and B2 seem to be following a similar path with total number of new cases in the A2 scenario being 9,727 and 9,218 cases under the B2 scenario. Although incidence levels in the BAU scenario coincided with those of A2 and B2 prior to 2020, they are somewhat lower post 2020. A similar picture emerges for the scenarios as they relate to food-borne illnesses and to gastroenteritis. Specifically for food-borne illnesses, the BAU scenario recorded 27,537 cases, the A2 recorded 28,568 cases and the B2 recorded 28,679 cases. The focus on the selected sources of morbidity in the health sector has highlighted the fact that the vulnerability of the country’s health sector to climate change does not depend solely on exogenously derived impacts, but also on the behaviour and practices among the population. It is clear that the vulnerability which became evident in the analysis of the impacts on dengue fever, leptospirosis and food-borne illnesses is not restricted solely to climate or other external factors. The most important adaptation strategy being recommended targets lifestyle, behaviour and attitude changes. The population needs to be encouraged to alter their behaviours and practices so as to minimise their exposure to harmful outcomes as it relates to the incidence of these diseases.
Resumo:
The United Nations Economic Commission for Latin America and the Caribbean (ECLAC) is seeking to provide support to the Governments of Guyana, Jamaica and Barbados in researching the potential for employing renewable energy technologies to mitigate climate change. This exercise involves the study of different types of renewable technologies and mitigative strategies, with the aim of making recommendations to the governments on the development of their renewable energy sector. The recommendations may also assist in achieving their long-term objectives of reducing poverty and promoting healthy economies and sustainable livelihoods in keeping with the Millennium Development Goals. Guyana, Jamaica and Barbados each face common and specific challenges in their efforts to adequately define and implement their energy and climate policies, in a way that allows them to contribute to the mitigation effort against climate change, while promoting sustainable development within their countries. Each country has demonstrated an understanding of the global and national challenges pertaining to climate change. They have attempted to address these challenges through policies and various programmes implemented by local and international agencies. Documented and undocumented policies have sought to outline the directions to be taken by each territory as they seek to deploy new technologies to address issues related to energy and the environment. While all territories have sought to deploy multiple alternate and renewable technologies simultaneously, it is clear that, given their sizes and resource limitations, no one territory can achieve excellence in all these areas. Guyana has demonstrated the greatest potential for hydro energy and should pursue it as their main area of expertise. The country also has an additional major strategy that includes forest credits and the Reduced Emissions from Deforestation and Degradation (REDD) programme. This approach will be brought to the negotiation table in the upcoming climate change meeting in Copenhagen in December 2009. Of the three countries, Jamaica has the only active significant wind farm deployment, while Barbados has a long tradition in solar energy. Each country might then supplement their energy and fuel mix with other energy and fuel sources and draw from the experience of other countries. Given the synergies that might accrue from adopting a regional approach, the Caribbean Community Climate Change Centre (CCCCC) might be well positioned to play a coordinating role. This focus on renewable energy and biofuels should yield good, long-term results as it relates to mitigation against climate change, and good, short- and medium-term results as it relates to the development of sustainable economies. Each country might also achieve energy security, reduced oil dependence, significant reduction in harmful emissions and better foreign exchange management if they pursue good policies and implementation practices. Human and financial resources are critical to the success of planned interventions, and it will be necessary to successfully mobilize these resources in order to be effective in executing key plans.