25 resultados para Teresa, of Avila, Saint, 1515-1582.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Like many other Caribbean countries, Grenada, Saint Lucia and Saint Vincent and the Grenadines are almost entirely dependent on imported petroleum as their primary source of energy. In this regard, many countries in the subregion have taken a strategic approach to long-term planning in the energy sector towards creating higher levels of efficiency on both the demand and supply sides as well as promoting diversification in the energy mix. Within this context, this study was conducted to present mechanisms to improve energy efficiency (EE) in the transport sector in Grenada, Saint Lucia and Saint Vincent and the Grenadines. For each country, the report presents a brief description of current trends in energy consumption generally as well as energy issues in the transport sector and programmes, initiatives and regulatory mechanisms currently in place that are contributing to energy efficiency in the sector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water security which is essential to life and livelihood, health and sanitation, is determined not only by the water resource, but also by the quality of water, the ability to store surplus from precipitation and runoff, as well as access to and affordability of supply. All of these measures have financial implications for national budgets. The water sector in the context of the assessment and discussion on the impact of climate change in this paper includes consideration of the existing as well as the projected available water resource and the demand in terms of: quantity and quality of surface and ground water, water supply infrastructure - collection, storage, treatment, distribution, and potential for adaptation. Wastewater management infrastructure is also considered a component of the water sector. Saint Vincent and the Grenadines has two distinct hydrological regimes: mainland St Vincent is one of the wetter islands of the eastern Caribbean whereas the Grenadines have a drier climate than St Vincent. Surface water is the primary source of water supply on St Vincent, whereas the Grenadines depend on man-made catchments, rainwater harvesting, wells, and desalination. The island state is considered already water stressed as marked seasonality in rainfall, inadequate supply infrastructure, and institutional capacity constrains water supply. Economic modelling approaches were implemented to estimate sectoral demand and supply between 2011 and 2050. Residential, tourism and domestic demand were analysed for the A2, B2 and BAU scenarios. In each of the three scenarios – A2, B2 and BAU Saint Vincent and the Grenadines will have a water gap represented by the difference between the two curves during the forecast period of 2011 and 2050. The amount of water required increases steadily between 2011 and 2050 implying an increasing demand on the country‘s resources as reflected by the fact that the water supply that is available cannot respond adequately to the demand. The Global Water Partnership in its 2005 policy brief suggested that the best way for countries to build the capacity to adapt to climate change will be to improve their ability to cope with today‘s climate variability (GWP, 2005). This suggestion is most applicable for St Vincent and the Grenadines, as the variability being experienced has already placed the island nation under water stress. Strategic priorities should therefore be adopted to increase water production, increase efficiency, strengthen the institutional framework, and decrease wastage. Cost benefit analysis was stymied by data availability, but the ―no-regrets approach‖ which intimates that adaptation measures will be beneficial to the land, people and economy of Saint Vincent and the Grenadines with or without climate change should be adopted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Saint Lucia for the period 2010 - 2050, and by estimating the non-market, statistical life-based costs associated with this excess disease burden. The diseases initially considered in this report are a variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrhoeal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1, 2, and 4%, results show mean annual costs (morbidity and mortality) ranges of $80.2 million (in the B2 scenario, discounted at 4% annually) -$182.4 million (in the A2 scenario, discounted at 1% annually) for St. Lucia.1 These costs are compared to adaptation cost scenarios involving direct and indirect interventions in health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health costs from 2010-2050. In this context indirect interventions target sectors other than healthcare (e.g. water supply). It is also important to highlight that interventions can target both the supply of health infrastructure (including health status and disease monitoring), and households. It is suggested that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for St Lucia. Also, the need for this to be part of a coordinated regional response that avoids duplication in spending is highlighted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty alleviation, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of St. Kitts and Nevis (SKN). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations for possible adaptation strategies and costs and benefits of adaptation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Saint Lucia. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009 there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. In addition to temperature, there is also the threat of increased wind speeds. Since the early twentieth century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Saint Lucia, the estimated damage from 12 windstorms (including hurricanes) affecting the island was US$1 billion or about 106% of 2009 GDP. Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. This report attempted to quantify the likely effects of the changes in the climatic factors mentioned above on the economy of Saint Lucia. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations, as well as those under two, likely, Special Report on Emissions Scenarios (SRES) climate scenarios: A2 and B2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This manual contains information on the dataset compiled from the Survey of Living Conditions and Household Budgets (SLC/HBS) conducted in Saint Lucia by the Kairi Consultants Limited and National Assessment Team between 2005 and 2006. The SLC/HBS is a sample survey which generates data on households and individuals in the country. This manual was developed by the Economic Commission for Latin America and the Caribbean (ECLAC) – Subregional Headquarters in the Caribbean as a supplementary document for the Caribbean Household Surveys Database (CHSD). It is sectioned out into two main parts- section one provides brief description of the survey and section two contains a concise data dictionary of variables generated from the survey as well as additional variables created by ECLAC. In addition, for ease of reference, an index of all variables in the database is included at the end of the document.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This manual documents some of the material related to the Survey of Living Conditions and Household Budgets (SLC/HBS) conducted in Saint Lucia by the Kairi Consultants Limited and National Assessment Team between 2005 and 2006. The SLC/HBS is a sample survey which generates data on households and individuals in the country. The main objectives of this survey were (i) to collect information from households on their expenditure patterns, income and other characteristics and; (ii) to revise the 'average shopping basket' used in constructing the Consumer Price Index (CPI) for the country, and the relative weights of the items in the basket. The survey also provided valuable data for an assessment of the impact of socio-economic policies on the living conditions of the resident population in Saint Lucia. Further, data on households gathered in the survey also provide valuable inputs for the compilation of the country's National Accounts statistics relating to the household sector. This manual was developed by the Economic Commission for Latin America and the Caribbean (ECLAC) – Subregional Headquarters in the Caribbean as a supplementary document for the Caribbean Household Surveys Database (CHSD). The main components of this manual include survey methodology and the questionnaires used for data collection. The latter are included in the annex at the end of the document. All information contained therein was provided by the Statistics Department in Saint Lucia. The ECLAC Subregional Headquarters for the Caribbean is pleased to acknowledge the Saint Lucia Statistics Department for graciously consenting to the use of their surveys and metadata under the project Improving Caribbean Household Surveys. Due recognition must also be given to the Statistics and Economics Projection Division at ECLAC (Santiago) who provided guidance in the standardization of the datasets and the creation of the Caribbean Household Surveys Databank.