22 resultados para European and US constitutionalism
Resumo:
The energy sector is a dominant one in Trinidad and Tobago and it plays an important role in the twin-island republic‟s economy. In 2008, the share of the energy sector in gross domestic product (GDP) amounted to approximately 48% while contributing 57% to total Government revenue. In that same year, the sector‟s share of merchandise exports was 88%, made up mainly of refined oil products including petroleum, liquefied natural gas (LNG), and natural gas liquids (Central Bank of Trinidad and Tobago, 2009). Trinidad and Tobago is the main exporter of oil in the Caribbean region and the main producer of liquefied natural gas in Latin America and the Caribbean. The role of the country‟s energy sector is, therefore, not limited to serving as the engine of growth for the national economy but also includes providing energy security for the small island developing States of the Caribbean. However, with its hydrocarbon-based economy, Trinidad and Tobago is ranked seventh in the world in terms of carbon dioxide (CO2) emissions per capita, producing an estimated 40 million tonnes of CO2 annually. Almost 90% of these CO2 emissions are attributed directly to the energy sector through petrochemical production (56%), power generation (30%) and flaring (3%). Trinidad and Tobago is a ratified signatory to the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Although, as a non-Annex 1 country, Trinidad and Tobago is not required to cut its greenhouse gas emissions under the Protocol, it is currently finalizing a climate change policy document as well as a national energy policy with specific strategies to address climate change. The present study complements the climate change policy document by providing an economic analysis of the impact that climate change could have on the energy sector in Trinidad and Tobago under the Intergovernmental Panel on Climate Change alternative climate scenarios (A2 and B2) as compared to a baseline situation of no climate change. Results of analyses indicate that, in the short-run, climate change, represented by change in temperature, is not a significant determinant of domestic consumption of energy, electricity in particular, in Trinidad and Tobago. With energy prices subsidized domestically and fixed for years at a time, energy price does not play a role in determining electricity demand. Economic growth, as indicated by Gross Domestic Product (GDP), is the single major determinant of electricity consumption in the short-run. In the long-run, temperature, GDP, and patterns of electricity use, jointly determine electricity consumption. Variations in average annual temperature due to climate change for the A2 scenario are expected to lead to an increase in electricity consumption per capita, equivalent to an annual increase of 1.07% over the 2011 baseline value of electricity consumption per capita. Under the B2 scenario, the average annual increase in electricity consumption per capita over the 2011 baseline value is expected to be 1.01%. The estimated economic impact of climate change on electricity consumption for the period 2011-2050 is valued at US$ 142.88 million under the A2 scenario and US$ 134.83million under the B2 scenario. These economic impact estimates are equivalent to a loss of 0.737% of 2009 GDP under the A2 climate scenario and a loss of 0.695% of 2009 GDP under the B2 scenario. On the energy supply side, sea level rise and storm surges present significant risks to oil installations and infrastructure at the Petroleum Company of Trinidad and Tobago (PETROTRIN) Pointe-a-Pierre facilities (Singh and El Fouladi, 2006). However, data limitations do not permit the conduct of an economic analysis of the impact of projected sea level rise on oil and gas production.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Events in Argentina dominated most of the third quarter of 2001 until September 11, when the terrorist attacks against the United States prompted a sell-off of emerging markets assets, increasing uncertainty and risk aversion against a background of global economic slowdown. Emerging markets' short term prospects to tap international capital markets deteriorated significantly. In the third quarter of 2001, Latin American countries issued US$7.6 billion in bonds, following US$11.2 billion in the second quarter and US$13.2 billion in the first quarter, which had been a jump from only US$2.9 billion in the last quarter of 2000. At first, it seemed that the pace of debt issuance would slow down considerably given Argentina's troubles in July, as Argentina's bond auction at the beginning of the month was poorly received, forcing the government to shorten the maturity of the new debt and to pay rates as high as those during the Russian crisis in 1998. By August, however, emerging markets rebounded strongly on the back of a new US$8 billion IMF assistance package to Argentina, with both Mexico and Brazil successfully launching large issues. International markets displayed considerable flexibility as investors gave Mexico's US$1.5 billion 30- year bond and Brazil's JPY200 billion two-year samurai issue a warm reception. This return to capital markets was interrupted by the events of September 11, which caused debt issuance to fall sharply in September and October. Following the events of September 11, EMBI+ spreads widened above 1,000 basis points for the first time in nearly two years. According to J.P. Morgan there was a 3.7% market decline in September, which brought year-to-date returns for the EMBI+ to only 0.06%. Emerging markets debt, however, fared better than most other fixed income and equity markets in the immediate aftermath of the attacks. U.S. high-yield market suffered its worst month since August 1998, declining by 6.5%, while the S&P 500 and Nasdaq declined by 8.2% and 17%, respectively. Emerging equity markets suffered even greater declines, with losses as severe as 24% in local currency terms and 31% in U.S. dollar terms.
Resumo:
Includes bibliography
Resumo:
Includes bibliography.
Resumo:
In this study, an attempt is made to assess the economic impact of climate change on nine countries in the Caribbean basin: Aruba, Barbados, Dominican Republic, Guyana, Jamaica, Montserrat, Netherlands Antilles, Saint Lucia and Trinidad and Tobago. A methodological approach proposed by Dell et al. (2008) is used in preference to the traditional Integrated Assessment Models. The evolution of climate variables and of the macroeconomy of each of the nine countries over the period 1970 to 2006 is analyzed and preliminary evidence of a relationship between the macroeconomy and climate change is examined. The preliminary investigation uses correlation, Granger causality and simple regression methods. The preliminary evidence suggests that there is some relationship but that the direction of causation between the macroeconomy and the climate variables is indeterminate. The main analysis involves the use of a panel data (random effects) model which fits the historical data (1971-2007) very well. Projections of economic growth from 2008 to 2099 are done on the basis of four climate scenarios: the International Panel on Climate Change A2, B2, a hybrid A2B2 (the mid-point of A2 and B2), and a ‘baseline’ or ‘Business as Usual’ scenario, which assumes that the growth rate in the period 2008-2099 is the same as the average growth rate over the period 1971-2007. The best average growth rate is under the B2 scenario, followed by the hybrid A2B2 and A2 scenarios, in that order. Although negative growth rates eventually dominate, they are largely positive for a long time. The projections all display long-run secular decline in growth rates notwithstanding short-run upward trends, including some very sharp ones, moving eventually from declining positive rates to negative ones. The costs associated with the various scenarios are all quite high, rising to as high as a present value (2007 base year) of US$14 billion in 2099 (constant 1990 prices) for the B2 scenario and US$21 billion for the BAU scenario. These costs were calculated on the basis of very conservative estimates of the cost of environmental degradation. Mitigation and adaptation costs are likely to be quite high though a small fraction of projected total investment costs.