32 resultados para Economic Value


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 2014 edition of Latin America and the Caribbean in the World Economy: Regional integration and value chains amid challenging external conditions has four chapters. Chapter I examines the main features of the international context and their repercussions for world and regional trade. Chapter II looks at Latin American and Caribbean participation in global value chains and confirms that the region, with the exception of Mexico and Central America, has only limited linkages with the three major regional value chains of Asia, Europe and North America. This chapter also looks at how participation in value chains may contribute to more inclusive structural change, by analysing three core microeconomic aspects. Chapter III identifies various spheres in which regional integration and cooperation can help strengthen production integration between the economies of Latin America and the Caribbean. The fourth chapter explores the intra- and extraregional trade relations of the countries of the Caribbean Community (CARICOM) and considers how to strengthen production integration in the subregion by taking advantage of linkages beyond trade and building on commercial and production complementarities among the members. The chapter also reviews the differences between the countries in terms of income, population and production and export structure, in a context of marked macroeconomic vulnerability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the present study was to determine the value of impacts due to climate change on the agricultural sector in the Caribbean under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2 and B2 scenarios. More specifically, the study aimed to evaluate the direction and magnitude of the potential impacts of climate change on aggregate agricultural output and other key agricultural indicators. Further, the study forecast changes in income for agricultural output for key subsectors under the A2 and B2 scenarios, from 2011 to 2050. It analysed the benefits and costs of the key adaptation strategies identified by Caribbean Governments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy sector is a dominant one in Trinidad and Tobago and it plays an important role in the twin-island republic‟s economy. In 2008, the share of the energy sector in gross domestic product (GDP) amounted to approximately 48% while contributing 57% to total Government revenue. In that same year, the sector‟s share of merchandise exports was 88%, made up mainly of refined oil products including petroleum, liquefied natural gas (LNG), and natural gas liquids (Central Bank of Trinidad and Tobago, 2009). Trinidad and Tobago is the main exporter of oil in the Caribbean region and the main producer of liquefied natural gas in Latin America and the Caribbean. The role of the country‟s energy sector is, therefore, not limited to serving as the engine of growth for the national economy but also includes providing energy security for the small island developing States of the Caribbean. However, with its hydrocarbon-based economy, Trinidad and Tobago is ranked seventh in the world in terms of carbon dioxide (CO2) emissions per capita, producing an estimated 40 million tonnes of CO2 annually. Almost 90% of these CO2 emissions are attributed directly to the energy sector through petrochemical production (56%), power generation (30%) and flaring (3%). Trinidad and Tobago is a ratified signatory to the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Although, as a non-Annex 1 country, Trinidad and Tobago is not required to cut its greenhouse gas emissions under the Protocol, it is currently finalizing a climate change policy document as well as a national energy policy with specific strategies to address climate change. The present study complements the climate change policy document by providing an economic analysis of the impact that climate change could have on the energy sector in Trinidad and Tobago under the Intergovernmental Panel on Climate Change alternative climate scenarios (A2 and B2) as compared to a baseline situation of no climate change. Results of analyses indicate that, in the short-run, climate change, represented by change in temperature, is not a significant determinant of domestic consumption of energy, electricity in particular, in Trinidad and Tobago. With energy prices subsidized domestically and fixed for years at a time, energy price does not play a role in determining electricity demand. Economic growth, as indicated by Gross Domestic Product (GDP), is the single major determinant of electricity consumption in the short-run. In the long-run, temperature, GDP, and patterns of electricity use, jointly determine electricity consumption. Variations in average annual temperature due to climate change for the A2 scenario are expected to lead to an increase in electricity consumption per capita, equivalent to an annual increase of 1.07% over the 2011 baseline value of electricity consumption per capita. Under the B2 scenario, the average annual increase in electricity consumption per capita over the 2011 baseline value is expected to be 1.01%. The estimated economic impact of climate change on electricity consumption for the period 2011-2050 is valued at US$ 142.88 million under the A2 scenario and US$ 134.83million under the B2 scenario. These economic impact estimates are equivalent to a loss of 0.737% of 2009 GDP under the A2 climate scenario and a loss of 0.695% of 2009 GDP under the B2 scenario. On the energy supply side, sea level rise and storm surges present significant risks to oil installations and infrastructure at the Petroleum Company of Trinidad and Tobago (PETROTRIN) Pointe-a-Pierre facilities (Singh and El Fouladi, 2006). However, data limitations do not permit the conduct of an economic analysis of the impact of projected sea level rise on oil and gas production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The agricultural sector‟s contribution to GDP and to exports in Jamaica has been declining with the post-war development process that has led to the differentiation of the economy. In 2010, the sector contributed 5.8% of GDP, and 3% to the exports (of goods), but with 36% of employment, it continues to be a major employer. With a little less than half of the population living in rural communities, agricultural activities, and their linkages with other economic activities, continue to play an important role as a source of livelihoods, and by extension, the economic development of the country. Sugar cane cultivation has, with the exception of a couple of decades in the twentieth century when it was superseded by bananas, dominated the agricultural export sector for centuries as the source of the raw materials for the manufacture of sugar for export. In 2005, sugar cane itself accounted for 6.4% of the sector‟s contribution to GDP, and 52% of the contribution of agricultural exports to GDP. Production for the domestic market has long been the larger subsector, organized around the production of root crops, especially yams, vegetables and condiments. To analyse the potential impact of climate change on the agricultural sector, this study selected three important crops for detailed examination. In particular, the study selected sugar cane because of its overwhelming importance to the export subsector of agriculture, and yam and escallion for both their contribution to the domestic subsector as well as the preeminent role yams and escallion play in the economic activities of the communities in the hills of central Jamaica, and the plains of the southwest respectively. As with other studies in this project, the methodology adopted was to compare the estimated values of output on the SRES A2 and B2 Scenarios with the value of output on a “baseline” Business As Usual (BAU), and then estimate the net benefits of investment in the relevant to climate change for the selected crops. The A2 and B2 Scenarios were constructed by applying forecasts of changes in temperature and precipitation generated by INSMET from ECHAM inspired climate models. The BAU “baseline” was a linear projection of the historical trends of yields for each crop. Linear models of yields were estimated for each crop with particular attention to the influence of the two climate variables – temperature and precipitation. These models were then used to forecast yields up to 2050 (table1). These yields were then used to estimate the value of output of the selected crop, as well as the contribution to overall GDP, on each Scenario. The analysis suggested replanting sugar cane with heat resistant varieties, rehabilitating irrigation systems where they existed, and establishing technologically appropriate irrigation systems where they were not for the three selected crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The economic impact of climate change on root crop, fisheries and vegetable production for Trinidad and Tobago under the A2 and B2 scenarios were modeled, relative to a baseline ―no climate change‖ case, where the mean temperature and rainfall for a base period of 1980 – 2000 was assumed for the years up to 2050. Production functions were used, using ARMA specifications to correct for serial autocorrelation. For the A2 scenarios, rainfall is expected to fall by approximately 10% relative to the baseline case in the 2020s, but is expected to rise thereafter, until by the 2040s rainfall rises slightly above the mean for the baseline case. For the B2 scenario, rainfall rose slightly above the mean for the baseline case in the current decade, but falls steadily thereafter to approximately 15% by the 2040s. Over the same period, temperature is expected to increase by 1.34C and 1.37C under A2 and B2 respectively. It is expected that any further increase in rainfall should have a deleterious effect on root crop production as a whole, since the above mentioned crops represent the majority of the root crops included in the study. Further expected increases in temperature will result in the ambient temperature being very close to the optimal end of the range for most of these crops. By 2050, the value of yield cumulative losses (2008$) for root crops is expected to be approximately 248.8 million USD under the A2 scenario and approximately 239.4 million USD under the B2 scenario. Relative to the 2005 catch for fish, there will be a decrease in catch potential of 10 - 20% by 2050 relative to 2005 catch potentials, other things remaining constant. By 2050 under the A2 and B2 scenarios, losses in real terms were estimated to be 160.2 million USD and 80.1 million USD respectively, at a 1% discount rate. For vegetables, the mean rainfall exceeds the optimal rainfall range for sweet peppers, hot peppers and melongene. However, while the optimal rainfall level for tomatoes is 3000mm/yr, other vegetables such as sweet peppers, hot peppers and ochroes have very low rainfall requirements (as low as 300 mm/yr). Therefore it is expected that any further decrease in rainfall should have a mixed effect on individual vegetable production. It is expected that any further increase in temperature should have a mixed effect on individual vegetable production, though model results indicated that as a group, an increase in temperature should have a positive impact on vegetable production. By 2050, the value of yield cumulative gains (2008$) for vegetables is expected to be approximately 54.9 million USD under the A2 scenario and approximately 49.1 million USD under the B2 scenario, given a 1% discount rate. For root crops, fisheries and vegetables combined, the cumulative loss under A2 is calculated as approximately 352.8 million USD and approximately 270.8 million USD under B2 by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios respectively by 2050. Sea Level Rise (SLR) by 2050 is estimated to be 0.255 m under A2 and 0.215 m under B2. GIS estimation indicated that for a 0.255 m sea level rise, combined with a 0.5 m high tide, there would be no permanent inundation of agricultural land in Trinidad. The total inundation area is 1.18 km2. This occurs only in the Caroni Watershed, on the western coast of Trinidad, and the areas are outside the Caroni Swamp. Even with an additional rise of 0.5 m to simulate a high rainfall event, the estimated inundated area is 4.67 km2, but with no permanent inundation, though likely to be subject to flooding. Based on eleven (11) evaluation criteria, the top potential adaptation options were identified: 1. Use of water saving irrigation systems and water management systems e.g. drip irrigation; 2. Mainstream climate change issues into agricultural management; 3. Repair/maintain existing dams; 4. Alter crop calendar for short-term crops; 5. Adopt improved technologies for soil conservation; 6. Establish systems of food storage; 7. Promote water conservation – install on-farm water harvesting off roof tops; 8. Design and implement holistic water management plans for all competing uses; 9. Build on- farm water storage (ponds and tanks); 10. Agricultural drainage; and 11. Installation of greenhouses. The most attractive adaptation options, based on the Benefit-Cost Ratio are: (1) Build on- farm water storage such as ponds and tanks (2) Mainstreaming climate change issues into agricultural management and (3) Water Harvesting. However, the options with the highest net benefits are, (in order of priority): (1) Build on- farm water storage such as ponds and tanks, (2) Mainstreaming climate change issues into agricultural management and (3) Use of drip irrigation. Based on the area burnt in Trinidad and Tobago between 2005 and 2009, the average annual loss due to fires is 1717.3 ha. At US$17.41 per carbon credit, this implies that for the total land lost to forest fires on average each year, the opportunity cost of carbon credit revenue is 74.3 million USD. If a teak reforestation programme is undertaken in Trinidad and Tobago, the net benefit of reforestation under a carbon credit programme would be 69 million USD cumulatively to 2050.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also in terms of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Montserrat for the period 2010 - 2050, and by estimating the monetary value associated with this excess disease burden. The diseases initially considered in this report are variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrheal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1%, 2% and 4%, results show mean annual costs (morbidity and mortality) ranges of $0.61 million (in the B2 scenario, discounted at 4% annually) – $1 million (in the A2 scenario, discounted at 1% annually) for Montserrat. These costs are compared to adaptation cost scenarios involving increased direct spending on per capita health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health burdens in the period 2010-2050. The methodology and results suggest that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for Montserrat. Also the report highlights the need for this to be part of a coordinated regional response that avoids duplication in spending.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Saint Lucia for the period 2010 - 2050, and by estimating the non-market, statistical life-based costs associated with this excess disease burden. The diseases initially considered in this report are a variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrhoeal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1, 2, and 4%, results show mean annual costs (morbidity and mortality) ranges of $80.2 million (in the B2 scenario, discounted at 4% annually) -$182.4 million (in the A2 scenario, discounted at 1% annually) for St. Lucia.1 These costs are compared to adaptation cost scenarios involving direct and indirect interventions in health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health costs from 2010-2050. In this context indirect interventions target sectors other than healthcare (e.g. water supply). It is also important to highlight that interventions can target both the supply of health infrastructure (including health status and disease monitoring), and households. It is suggested that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for St Lucia. Also, the need for this to be part of a coordinated regional response that avoids duplication in spending is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty reduction, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of the British Virgin Islands (BVI). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations of possible adaptation strategies and costs and benefits of adaptation. A multi-pronged approach is employed in valuing the marine and coastal sector. Direct use and indirect use values are estimated. The amount of economic activity an ecosystem service generates in the local economy underpins estimation of direct use values. Tourism and fisheries are valued using the framework developed by the World Resources Institute. Biodiversity is valued in terms of the ecological functions it provides, such as climate regulation, shoreline protection, water supply erosion control and sediment retention, and biological control, among others. Estimates of future losses to the coastal zone from climate change are determined by considering: (1) the effect of sea level rise on coastal lands; and (2) the effect of a rise in sea surface temperature (SST) on coastal waters. Discount rates of 1%, 2% and 4% are employed to analyse all loss estimates in present value terms. The overall value for the coastal and marine sector is USD $1,606 million (mn). This is almost 2% larger than BVI’s 2008 GDP. Tourism and recreation comprise almost two-thirds of the value of the sector. By 2100, the effects of climate change on coastal lands are projected to be $3,988.6 mn, and $2,832.9 mn under the A2 and B2 scenarios respectively. In present value terms, if A2 occurs, losses range from $108.1-$1,596.8 mn and if B2 occurs, losses range from $74.1-$1,094.1 mn, depending on the discount rate used. Estimated costs of a rise in SST in 2050 indicate that they vary between $1,178.0 and $1,884.8 mn. Assuming a discount rate of 4%, losses range from $226.6 mn for the B2 scenario to $363.0 mn for the A2 scenario. If a discount rate of 1% is assumed, estimated losses are much greater, ranging from $775.6-$1,241.0 mn. Factoring in projected climate change impacts, the net value of the coastal and marine sector suggests that the costs of climate change significantly reduce the value of the sector, particularly under the A2 and B2 climate change scenarios for discount rates of 1% and 2%. In contrast, the sector has a large, positive, though declining trajectory, for all years when a 4% discount rate is employed. Since the BVI emits minimal greenhouse gases, but will be greatly affected by climate change, the report focuses on adaptation as opposed to mitigation strategies. The options shortlisted are: (1) enhancing monitoring of all coastal waters to provide early warning alerts of bleaching and other marine events; (2) introducing artificial reefs or fish-aggregating devices; (3) introducing alternative tourist attractions; (4) providing retraining for displaced tourism workers; and (5) revising policies related to financing national tourism offices to accommodate the new climatic realities. All adaptation options considered are quite justifiable in national terms; each had benefit-cost ratios greater than 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Montserrat. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009, there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. Besides temperature, there is also the threat of wind speeds. Since the early 20th century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Montserrat, the estimated damage from four windstorms (including hurricanes) affecting the island was US$260 million or almost five times 2009 gross domestic product (GDP). Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. The report attempted to quantify the likely effects of the changes in the climatic factors mentioned above. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations as well as those under two likely climate scenarios: A2 and B2. The results suggest that under both scenarios, the island’s key tourism climatic features will likely decline and therefore negatively impact on the destination experience of visitors. Including this tourism climatic index in a tourism demand model suggests that this would translate into losses of around 145% of GDP. As it relates to coral reefs, the value of the damage due to the loss of coral reefs was estimated at 7.6 times GDP, while the damage due to land loss for the tourism industry was 45% of GDP. The total cost of climate change for the tourism industry was therefore projected to be 9.6 times 2009 GDP over a 40-year horizon. Given the potential for significant damage to the industry, a large number of potential adaptation measures were considered. Out of these, a short-list of 9 potential options was selected using 10 evaluation criteria. These included: (a) Increasing recommended design wind speeds for new tourism-related structures; (b) Construction of water storage tanks; (c) Irrigation network that allows for the recycling of waste water; (d) Enhanced reef monitoring systems to provide early warning alerts of bleaching events; (e) Deployment of artificial reefs and fish-aggregating devices; (f) Developing national evacuation and rescue plans; (g) Introduction of alternative attractions; (h) Providing re-training for displaced tourism workers, and; (i) Revised policies related to financing national tourism offices to accommodate the new climatic realities Using cost-benefit analysis, three options were put forward as being financially viable and ready for immediate implementation: (a) Increase recommended design speeds for new tourism-related structures; (b) Enhance reef monitoring systems to provide early warning alerts of bleaching events, and; (c) Deploy artificial reefs or fish-aggregating devices. While these options had positive benefit cost ratios, other options were also recommended based on their non-tangible benefits: an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climatic realities.