12 resultados para rational function fitting
em Reposit
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The break point of the curve of blood lactate vs exercise load has been called anaerobic threshold (AT) and is considered to be an important indicator of endurance exercise capacity in human subjects. There are few studies of AT determination in animals. We describe a protocol for AT determination by the lactate minimum test in rats during swimming exercise. The test is based on the premise that during an incremental exercise test, and after a bout of maximal exercise, blood lactate decreases to a minimum and then increases again. This minimum value indicates the intensity of the AT. Adult male (90 days) Wistar rats adapted to swimming for 2 weeks were used. The initial state of lactic acidosis was obtained by making the animals jump into the water and swim while carrying a load equivalent to 50% of body weight for 6 min (30-s exercise interrupted by a 30-s rest). After a 9-min rest, blood was collected and the incremental swimming test was started. The test consisted of swimming while supporting loads of 4.5, 5.0, 5.5, 6.0 and 7.0% of body weight. Each exercise load lasted 5 min and was followed by a 30-s rest during which blood samples were taken. The blood lactate minimum was determined from a zero-gradient tangent to a spline function fitting the blood lactate vs workload curve. AT was estimated to be 4.95 ± 0.10% of body weight while interpolated blood lactate was 7.17 ± 0.16 mmol/l. These results suggest the application of AT determination in animal studies concerning metabolism during exercise.
Resumo:
O objetivo deste estudo foi comparar a intensidade de exercício no lactato mínimo (LACmin), com a intensidade correspondente ao limiar de lactato (LL) e limiar anaeróbio (LAn). Participaram do estudo, 11 atletas do sexo masculino (idade, 22,5 + 3,17 anos; altura, 172,3 + 8,2 cm; peso, 66,9 + 8,2kg; e gordura corporal, 9,8 + 3,4%). Os indivíduos foram submetidos, em uma bicicleta eletromagnética (Quinton - Corival 400), a dois testes: 1) exercício contínuo de cargas crescentes - carga inicial de 100W, com incrementos de 25W a cada três min. até a exaustão voluntária; e 2) teste de lactato mínimo - inicialmente os indivíduos pedalaram duas vezes 425W (+ 120%max) durante 30 segundos, com um min. de intervalo, com o objetivo de induzir o acúmulo de lactato. Após oito min. de recuperação passiva, os indivíduos iniciaram um teste contínuo de cargas progressivas, idêntico ao descrito anteriormente. O LL e o LAn foram identificados como sendo o menor valor entre a razão - lactato sanguíneo (mM) / intensidade de exercício (W), e a intensidade correspondente a 3,5mM de lactato sanguíneo, respectivamente. O LACmin foi identificado como sendo a intensidade correspondente a menor concentração de lactato durante o teste de cargas progressivas. Não foi observada diferença significante entre a potência do LL (197,7 + 20,7W) e do LACmin (201,6 + 13,0W), sendo ambas significantemente menores do que do LAn (256,7 + 33,3W). Não foram encontradas também diferenças significantes para o (ml.kg-1.min-1) e a FC (bpm) obtidos no LL (43,2 + 5,01; 152,0 + 13,0) e no LACmin (42,1 + 3,9; 159,0 + 10,0), sendo entretanto significantemente menores do que os obtidos para o LAn (52,2 + 8,2; 174,0 + 13,0, respectivamente). Pode-se concluir que o teste de LACmin, nas condições experimentais deste estudo, pode subestimar a intensidade de MSSLAC (estimada indiretamente pelo LAn), o que concordacom outros estudos que determinaram a MSSLAC diretamente. Assim, são necessários mais estudos que analisem o possível componente tempo-dependente (intensidade inicial) que pode existir no protocolo do LACmin.
Resumo:
This paper proposes to use a state-space technique to represent a frequency dependent line for simulating electromagnetic transients directly in time domain. The distributed nature of the line is represented by a multiple 1t section network made up of the lumped parameters and the frequency dependence of the per unit longitudinal parameters is matched by using a rational function. The rational function is represented by its equivalent circuit with passive elements. This passive circuit is then inserted in each 1t circuit of the cascade that represents the line. Because the system is very sparse, it is possible to use a sparsity technique to store only nonzero elements of this matrix for saving space and running time. The model was used to simulate the energization process of a 10 km length single-phase line. ©2008 IEEE.
Resumo:
The present work describes an alternative methodology for identification of aeroelastic stability in a range of varying parameters. Analysis is performed in time domain based on Lyapunov stability and solved by convex optimization algorithms. The theory is outlined and simulations are carried out on a benchmark system to illustrate the method. The classical methodology with the analysis of the system's eigenvalues is presented for comparing the results and validating the approach. The aeroelastic model is represented in state space format and the unsteady aerodynamic forces are written in time domain using rational function approximation. The problem is formulated as a polytopic differential inclusion system and the conceptual idea can be used in two different applications. In the first application the method verifies the aeroelastic stability in a range of air density (or its equivalent altitude range). In the second one, the stability is verified for a rage of velocities. These analyses are in contrast to the classical discrete analysis performed at fixed air density/velocity values. It is shown that this method is efficient to identify stability regions in the flight envelope and it offers promise for robust flutter identification.
Resumo:
This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.
Resumo:
This paper presents a new methodology to analyze aeroelastic stability in a continuous range of flight envelope with varying parameter of velocity and altitude. The focus of the paper is to demonstrate that linear matrix inequalities can be used to evaluate the aeroelastic stability in a region of flight envelope instead of a single point, like classical methods. The proposed methodology can also be used to study if a system remains stable during an arbitrary motion from one point to another in the flight envelope, i.e., when the problem becomes time-variant. The main idea is to represent the system as a polytopic differential inclusion system using rational function approximation to write the model in time domain. The theory is outlined and simulations are carried out on the benchmark AGARD 445.6 wing to demonstrate the method. The classical pk-method is used for comparing results and validating the approach. It is shown that this method is efficient to identify stability regions in the flight envelope. (C) 2014 Elsevier Ltd. All rights reserved.
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)