5 resultados para multi-constraint assignment
em Reposit
Resumo:
This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses' preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust. © 2013 Springer Science+Business Media New York.
Resumo:
This paper presents a new approach for solving constraint optimization problems (COP) based on the philosophy of lexicographical goal programming. A two-phase methodology for solving COP using a multi-objective strategy is used. In the first phase, the objective function is completely disregarded and the entire search effort is directed towards finding a single feasible solution. In the second phase, the problem is treated as a bi-objective optimization problem, turning the constraint optimization into a two-objective optimization. The two resulting objectives are the original objective function and the constraint violation degree. In the first phase a methodology based on progressive hardening of soft constraints is proposed in order to find feasible solutions. The performance of the proposed methodology was tested on 11 well-known benchmark functions.
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)