63 resultados para microvilli
em Reposit
Resumo:
O endotélio corneal é uma monocamada de células poligonais. A integridade e saúde dessa camada são essenciais para a manutenção da transparência corneal normal. Este estudo reportou pela primeira vez, de forma detalhada, a morfologia ultra-estrutural e a morfometria do endotélio corneal de suínos adultos mestiços à microscopia eletrônica de varredura (MEV). A superfície endothelial corneal apresentou um padrão regular de células poligonais, com predomínio da forma hexagonal e de bordas celulares nítidas. O núcleo foi observado como protuberância arredondada no centro da célula. Também foram observados os cílios (2-4) em apenas algumas células da região periférica da córnea, as aberturas das vesículas pinocitóticas na proximidade dos cílios, as microvilosidades, as varas da borda e as bordas celulares em formato de zigzag. A área celular média foi significativamente maior (P<0,05) no centro da córnea do que na periferia, com um coeficiente de variação menor no centro da córnea. A densidade celular média foi significativamente maior na periferia (P<0,05) e 43,9% maior que os dados reportados por outros autores na microscopia especular, o que demonstra o efeito da retração celular durante o processamento das amostras. O valor médio do número de lados das células (pleomorfismo) foi de 5,9, o que evidencia um predomínio do formato hexagonal. A percentagem de células hexagonais foi significativamente maior no centro (P<0,001). Os parâmetros obtidos nesta pesquisa servirão de base para estudos futuros sobre o efeito de medicamentos, cirurgias intracamerulares ou soluções para armazenamento de córneas para transplantes no endotélio corneal do suíno.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The epithelial principal cells are the predominant cell type of the epididymis. These cells have been shown to be both secretory and endocytic cells. The apical region of the cytoplasm of principal cells in the mongrel dog are located close to the cell apex and tubular lumen, and shown microvilli at the luminal border and present a endocytic apparatus, that consists of coated pits and vesicles, endosomes of varying size, multivesicular bodies, and lysosomes. The endosomes, multivesicular bodies and lysosomes contained the electron-dense patches. These results suggest that principal cells of the epididymis in the dog as possess a highly developed endocytic apparatus play a role in endocytosis. These cells function are similarly to the related in other mammals, in performing endocytosis.
Resumo:
The yolk syncytial layer (YSL) has been regarded as one of the main obstacles for a successful cryopreservation of fish embryos. The purpose of this study was to identify and characterize the YSL in Prochilodus lineatus, a fish species found in southeastern Brazil and considered a very important fishery resource. Embryos were obtained through artificial breeding by hormonal induction. After fertilization, the eggs were incubated in vertical incubators with a controlled temperature (28 degrees C). Embryos were collected in several periods of development up to hatching and then fixed with 2% glutaralclehyde and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.3). Morphological analyses were carried out under either light, transmission or scanning electron microscopy. The formation of the YSL in P. lineatus embryos starts at the end of the cleavage stage (morula), mainly at the margin of the blastoderm, and develops along the embryo finally covering the entire yolk mass (late gastrula) and producing a distinct intermediate zone between the yolk and the endodermal cells. The YSL was characterized by the presence of microvilli on the contact region with the yolk endoderm. A cytoplasmic mass, full of mitochondria, vacuoles, ribosomes, endomembrane nets and euchromatic nuclei, indicated a high metabolic activity. This layer is shown as an interface between the yolk and the embryo cells that, besides sustaining and separating the yolk, acts as a structure that makes it available for the embryo. The structural analyses identified no possible barriers to cryoprotectant penetration.
Resumo:
Uroplakins, cytokeratins and the apical plasma membrane were studied in the epithelia of mouse urinary tract. In the simple epithelium covering the inner medulla of the renal pelvis, no uroplakins or cytokeratin 20 were detected and cells had microvilli on their apical surface. The epithelium covering the inner band of the outer medulla became pseudostratified, with the upper layer consisting of large cells with stalks connecting them to the basal lamina. Uroplakins and cytokeratin 20 were not expressed in these cells. However, some superficial cells appeared without connections to the basal lamina; these cells expressed uroplakins Ia, Ib, II and III and cytokeratin 20, they contained sparse small uroplakin-positive cytoplasmic vesicles and their apical surface showed both microvilli and ridges. Cytokeratin 20 was seen as dots in the cytoplasm. This epithelium therefore showed partial urothelial differentiation. The epithelium covering the outer band of the outer medulla gradually changed from a two-layered to a three-layered urothelium with typical umbrella cells that contained all four uroplakins. Cytokeratin 20 was organized into a complex network. The epithelium possessed an asymmetric unit membrane at the apical cell surface and fusiform vesicles. Umbrella cells were also observed in the ureter and urinary bladder. In males and females, the urothelium ended in the bladder neck and was continued by a non-keratinized stratified epithelium in the urethra in which no urothelial cell differentiation markers were detected. We thus show here the expression, distribution and organization of specific proteins associated with the various cell types in the urinary tract epithelium.
Resumo:
The principal (P) cells of epididymidis surface epithelium of Agouti paca were related to processes of adsorptive endocvtosis and phase-fluid endocvtosis, as well as protein secretion apparently also occur. These findings had been proposed on the base the cytoplasmic ultrastructural features of P cells in which were seen an expressive number of vesicles with several shapes, sizes and internalized content occurring also smaller pits and pale small vesicles located next to the apical brush border of microvilli. Moreover, occurred coated vesicles, smooth surface vesicles and great vesicles; multivesicular bodies, endosomes and lysosomes mainly viewed on supranuclear and apical positions. Presence of an appocrine secretory pathway was characterized in P cells through the occurrence of apical cytoplasmic expansions, protruding into the ducts epididymidis lumina) compartment.
Resumo:
Genetic variation in the transcription factor interferon regulatory factor 6 (IRF6) causes and contributes risk for oral clefting disorders. We hypothesized that genes regulated by IRF6 are also involved in oral clefting disorders. We used five criteria to identify potential IRF6 target genes; differential gene expression in skin taken from wild-type and Irf6-deficient murine embryos, localization to the Van der Woude syndrome 2 (VWS2) locus at 1p36-1p32, overlapping expression with Irf6, presence of a conserved predicted-binding site in the promoter region, and a mutant murine phenotype that was similar to the Irf6 mutant mouse. Previously, we observed altered expression for 573 genes; 13 were located in the murine region syntenic to the VWS2 locus. Two of these genes, Wdr65 and Stratifin, met 4 of 5 criteria. Wdr65 was a novel gene that encoded a predicted protein of 1,250 amino acids with two WD domains. As potential targets for Irf6 regulation, we hypothesized that disease-causing mutations will be found in WDR65 and Stratifin in individuals with VWS or VWS-like syndromes. We identified a potentially etiologic missense mutation in WDR65 in a person with VWS who does not have an exonic mutation in IRF6. The expression and mutation data were consistent with the hypothesis that WDR65 was a novel gene involved in oral clefting. (C) 2011 Wiley-Liss, Inc.
Resumo:
The midgut of adult female Anopheles darlingi is comprised of narrow anterior and dilated posterior regions, with a single layered epithelium composed by cuboidal digestive cells. Densely packed apical microvilli and an intricate basal labyrinth characterize each cell pole. Before blood feeding, apical cytoplasm contains numerous round granules and whorled profiles of rough endoplasmic reticulum. Engorgement causes a great distension of midgut. This provokes the flattening of digestive cells and their nuclei. Simultaneously, apical granules disappear, the whorls of endoplasmic reticulum disassemble and 3 h post bloodmeal (PBM), nucleoli enlarge manyfold. An intense absorptive process takes place during the first 24h PBM, with the formation of large glycogen inclusions, which persist after the end of the digestive process. Endoproteases activities are induced after bloodmeal and attain their maximum values between 10 and 36 h PBM. At least two different aminopeptidases seem to participate in the digestive process, with their maximum activity values at 36 and 48 h PBM, respectively. Coarse electrondense aggregates, possibly debris from digested erythrocytes, begin to appear on the luminal face of the peritrophic membrane from 18 h PBM and persist during all the digestive process, and are excreted at its end. We suggest that these aggregates could contain some kind of insoluble form of haem, in order of neutralize its toxicity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The adult female Culex quinquefasciatus midgut comprises a narrow anterior and a dilated posterior region, with epithelia composed of a monolayer of adjacent epithelial cells joined at the apical portion by septate junctions. Densely packed apical microvilli and an intricate basal labyrinth characterise each cell pole. Our morphological studies suggest that, during blood digestion, the anterior midgut region also participates in an initial absorptive stage which is probably related to the intake of water, salts and other small molecules. This activity peaked by 6 h after bloodmeal feeding (ABF) and ended approximately 18 h ABF, when the peritrophic membrane was already formed. After this time, absorption only occurred in the posterior region, with morphologic and biochemical evidence of high synthetic activity related to the secretion of proteases. Chymotrypsin, elastase, aminopeptidase, and trypsin reached their maximum activity at around 36 h ABF. Digestion products were apparently absorbed and transported to the basal labyrinth, from where they should be released to the hemolymph. At 72 h ABF, proteolysis had already ended and protein levels had returned to those observed before blood meal. The epithelium of the posterior region, however, did not return to its initial morphology, appearing quite disorganised. Additionally, from 48 h ABF onwards some epithelial cells showed morphological signals of apoptosis. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The technique of osmium imidazol for the ultrastructural detection of lipids in the secretory cells of the venom gland of 14-days old worker bees of Apis mellifera L. demonstrated the presence of these components at various sites of the gland. These lipids were found mainly associated to the external region of the basal lamina and the microvilli, in the intercellular spaces, in the cuticle of the collecting canaliculi and in the secretion contained in the glandular lumen. Therefore, in addition to revealing the presence of lipids in the secretion, this technique also allowed us to attribute an exogenous origin to the lipids in the secretion; they are taken up from the haemolymph.
Resumo:
Morphological data concerning the venom gland of worker ants of Pachycondyla striata revealed that this gland consists of three distinct regions: an external secretory portion, composed by a secretory filament that bifurcates in order to give rise to other two filaments; an internal secretory portion, represented by the convoluted gland; and a storage portion, represented by a sac-shaped reservoir. The ultrastructural analysis showed that the reservoir is enveloped by a simple pavementous epithelium, coated internally with a cuticle. The external secretory portion is composed by cells forming a simple cubic epithelium, in which the apical portion presents numerous microvilli while the basal portion of the cells shows infoldings of the plasma membrane containing numerous mitochondria. The convoluted gland possesses cells of irregular morphology with nuclei containing condensed chromatin, suggesting inactivity. However, these cells are in fact undergoing secretory activity, which is probably added to the final secretion produced by the gland. The cytoplasm of these cells contains several elements distributed therein, such as ribosomes and polyribosomes, lipid droplets, and protein inclusions in the form of crystals, thus Suggestive of protein storage, which would be used by the insect when metabolically required. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The eusociality developed in Hymenoptera and Isoptera is driven by an efficient interaction between exocrine glands and jointed appendages, both in close interaction with the environment. In this context, the mandible of ants plays an important role, since, in addition to being the main jointed appendage, it possess glandular functions. As an example we might name the two glands associated with the mandible: the mandibular and the intramandibular glands. The intramandibular gland is found inside the mandible and consists of a hypertrophied secretory epithelium and secretory cells in the mandible's lumen. The secretion of the secretory epithelium is liberated through intracuticular ducts that open at the base of hairs at the mandible's surface. The secretion of the intramandibular gland (epithelium and secretory cells) reacted positively to tests for the detection of polysaccharides and proteins, thus suggesting that it consists of glycoproteins. The ultrastructure of the secretor epithelium presents variations related to the developmental stage of the individual, showing a large number of ribosomes and microvilli close to the cuticle in young individuals, while in the older specimens it was possible to note the formation of ail intracellular reservoir. These variations of secretory epithelium, as also the interaction between the cellular groups inside the mandible, are important information about this gland in leaf-cutting ants. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The sternal gland is considered the only source of trail pheromones in termites. The morphology of the sternal gland was investigated in workers of Coptotermes gestroi using transmission and scanning electron microscopy. The results showed a small bilobed gland at the anterior part of the fifth abdominal sternite. The cuticular surface of the sternal gland showed a V-shaped structure with two peg sensilla in elevated socket and various campaniform sensilla. Pores and cuticular scale-like protuberances also occur in the glandular area. The ultrastructure showed a gland composed of class I cells and two different types of class 3 cells distinguished by location, different size and electron-density of secretory vesicles. Small class 3 cells (type 1) of the anterior lobe are inserted among class I cells and have weakly electron-dense vesicles associated with mitochondria, glycogen and smooth endoplasmic reticulum. The class 3 cells (type 2) of posterior lobe showed many round electron-lucent vesicles of secretion, abundant free ribosomes and a well-developed Golgi apparatus. Each class 3 cell is connected to the cuticle by a cuticular duct constituted by the receiving canal and the conducting canal. The secretion of class I cells is stored in an inner subcuticular reservoir that is delimited by the microvilli of these cells. This inner reservoir is large and crossed by the campaniform sensilla and ducts of two types of class 3 cells that open outside of the insect body. An exterior reservoir also is present between the fourth and fifth sternite. The complex structure of the sternal gland suggests multicomponents for the trail pheromone in the worker of C gestroi. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The ultrastructural analysis of the midgut of Cephalotes atratus. C. clypeatus, and C. pusillus reveled that the midgut epithelium lays on a basal lamina and is composed basically of three cell types: digestive cells, regenerative cells, and goblet cells. In these ants, the rough endoplasmic reticulum, in addition to producing digestive enzymes, is involved in the formation of concretions and ion storage in specialized vacuoles present in the midgut. These concretions are spherocrystals and may contribute to stabilize the pH and to maintain symbiotic bacteria found between microvilli. The ultrastructure analysis of these bacteria revealed the presence of a double envelope typical of gram-negative bacteria. For the three species examined, the ultrastructure similarities are conspicuous, suggesting that this may be the pattern for the genus Cephalotes. Details of the relationship between bacteria and microvilli were examined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)