149 resultados para invariant partition-functions
em Reposit
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.
Resumo:
The matching of the BPS part of the (super) membrane's spectrum enables one to obtain membrane's results via string calculations. We compute the thermodynamic behavior at large coupling constant by considering M-theory on a manifold with topology T-2 X R-9. In the small coupling limit of M-theory the entropy coincides with the standard entropy of type IIB strings. We claim that the finite temperature partition functions associated with BPS p-brane spectrum can be analytically continued to well-defined functionals. This means that finite temperature can be introduced in brane theory. For the point particle limit (p --> 0) the entropy has the standard behavior of thermodynamic quantities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector of topological charge v. The constraints depend on the topological charge only through the combination N-f +betav/2 where the value of the Dyson index beta is determined by the reality type of the fermions. This duality between flavor and topology is inherited by the small-mass expansion of the partition function and all spectral sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special case beta =2 but arbitrary topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the potential V(X) = 1/X.
Resumo:
We consider arbitrary U (1) charged matter non-minimally coupled to the self-dual field in d = 2 + 1. The coupling includes a linear and a rather general quadratic term in the self-dual field. By using both Lagragian gauge embedding and master action approaches we derive the dual Maxwell Chern-Simons-type model and show the classical equivalence between the two theories. At the quantum level the master action approach in general requires the addition of an awkward extra term to the Maxwell Chern-Simons-type theory. Only in the case of a linear coupling in the self-dual field can the extra term be dropped and we are able to establish the quantum equivalence of gauge invariant correlation functions in both theories.
Resumo:
Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities. © 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
We suggest a constrained instanton (CI) solution in the physical QCD vacuum which is described by large-scale vacuum field fluctuations. This solution decays exponentially at large distances. It is stable only if the interaction of the instanton with the background vacuum field is small and additional constraints are introduced. The CI solution is explicitly constructed in the ansatz form, and the two-point vacuum correlator of the gluon field strengths is calculated in the framework of the effective instanton vacuum model. At small distances the results are qualitatively similar to the single instanton case; in particular, the D1 invariant structure is small, which is in agreement with the lattice calculations.