142 resultados para fast sample preparation method
em Reposit
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A flow injection spectrophotometric system is proposed for phosphite determination in fertilizers by the molybdenum blue method after the processing of each sample two times on-line without and with an oxidizing step. The flow system was designed to add sulfuric acid or permanganate solutions alternately into the system by simply displacing the injector-commutator from one resting position to another, allowing the determination of phosphate and total phosphate, respectively. The concentration of phosphite is obtained then by difference between the two measurents. The influence of flow rates, sample volume, and dimension of flow line connecting the injector-commutator to the main analytical channel was evaluated. The proposed method was applied to phosphite determination in commercial liquid fertilizers. Results obtained with the proposed FIA system were not statistically different from those obtained by titrimetry at the 95% confidence level. In addition, recoveries within 94 and 100% of spiked fertilizers were found. The relative standard deviation (n = 12) related to the phosphite-converted-phosphate peak alone was <= 3.5% for 800 mg L-1 P (phoshite) solution. Precision due to the differences of total phosphate and phosphate was 1.1% for 10 mg L-1 P (phosphate) + 3000 mg L-1 P (phosphite) solution. The sampling rate was calculated as 15 determinations per hour, and the reagent consumption was about 6.3 mg of KMnO4, 200 mg of (NH4)(6)Mo7O24 center dot 4H(2)O, and 40 mg of ascorbic acid per measurement.
Resumo:
A flow injection system with online sample preparation is proposed for the determination of phosphite in liquid fertilizers by spectrophotometry. After loop-based injection, phosphite is oxidized by an acidic permanganate solution (1.0 10(-2) mol L-1 KMnO4 + 1.0 mol L-1 H2SO4) in a heated reactor (50 degreesC). The phosphate generated is then determined by the molybdenum blue method. Influence of flow rates, temperature, and concentration and order of addition of reagents, sample volume, and reactor configuration for the blue complex formation on recorded signals were investigated. The pow system was applied to phosphite determination in commercial samples of liquid fertilizers. The proposed system handles about 80 samples per hour [0.05-0.40% (w/v) H3PO3; R = 0,9998], consuming about 80 muL sample, 1 mg KMnO4, 25 mg (NH)(6)Mo7O24, and Ia mg ascorbic acid per determination. Results are precise [relative standard deviation less than or equal to 3.5% for 0.1% (w/v) H3PO3, n = 12] and in agreement with those obtained by gravimetry at 95% confidence level. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Different conditions of extraction using water, a methanol-water mixture and nitric acid solutions were evaluated for speciation of As(iii), As(v), DMA and MMA in plant samples that previously received As(v) after being sown and emergence was investigated. Microwave-assisted extraction (MAE) using diluted nitric acid solutions was also performed for arsenic extraction from chicken feed samples. The separation and determination of arsenic species were performed using HPLC-ICP-MS. The interference standard method (IFS) using 83Kr+ as the IFS probe was employed to minimize spectral interferences caused by polyatomic species, such as 40Ar 35Cl+. The extraction procedures tested presented adequate extraction efficiencies (90%), and the four arsenic species evaluated were found in plant samples. Extractions with diluted nitric acid solution at 90 °C were the most efficient strategy, with quantitative recoveries for all four As species in plant tissues. On the other hand, the methanol-water mixture was the solvent with the lowest extraction efficiency (50-60%). For chicken feed samples, MAE at 100 °C for 30 min resulted in an extraction efficiency of 97% and only As(v) was found, without any species interconversion. The IFS method contributed to improving precision and limits of detection and quantification for all tested extraction procedures. Significant improvements on accuracy were obtained by applying the IFS method and recoveries between 77 and 94%, and 82 and 93% were obtained for plant extracts and chicken feed samples, respectively. This journal is © 2013 The Royal Society of Chemistry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). PPV derivatives are highly susceptible to photo-oxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (similar to 50 nm) to allow for a more realistic comparison. Degradation was monitored with UV-vis and FTIR spectroscopies. The results indicated that cast films were completely degraded in ca. 400 min, while LB took longer time, i.e. about four times the values for the cast films. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state.
Resumo:
The sintering behavior of SnO2-CuO system has been investigated for two preparation methods and as a function of antimony concentration. A chemical preparation (Pechini's method) resulted in powders with smaller particle sizes than for a conventional oxide mixture. This led to smaller grain sizes in Pechini's method ceramics. The microstructures were heterogeneous in both systems, showing grain coarsening. The densification was aided by liquid phase formation, due to copper, in both systems, but the temperature of maximum shrinkage rate was larger for the Pechini's method ceramic because copper had to diffuse to the grain surface. Independently of the preparation method, antimony did not aid densification, and increasing its concentration led to a higher densification temperature and lower shrinkage rate. (C) 2003 Kluwer Academic Publishers.
Resumo:
This work describes the influence of the preparation method and the carbon support using a low contentof cerium oxide nanoparticles (CeO2/C 4%) on H2O2electrogeneration via the oxygen reduction reac-tion (ORR). For this purpose, the polymeric precursor (PPM) and sol-gel (SGM) methods with Vulcan XC72R (V) and Printex L6 (P) supports were employed. The materials were characterized by X-ray diffrac-tion (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TheXRD analysis identified two phases comprising CeO2and CeO 2-x. The smallest mean crystallite size wasexhibited for the 4% CeO2/C PPM P material, which was estimated using the Debye-Scherrer equation tobe 6 nm and 4 nm for the CeO2and the CeO 2-xphases, respectively, and was determined by TEM to be5.9 nm. XPS analysis was utilized to compare the oxygen content of the 4% CeO2/C PPM P to Printex L6.The electrochemical analysis was accomplished using a rotating ring-disk electrode. The results showedthat the 4% CeO2/C specimen, prepared by PPM and supported on Printex L6, was the best electrocatalystfor H2O2production in 1 mol L -1NaOH. This material showed the highest ring current, producing 88%H2O2and transferring 2.2 electrons per O 2molecule via the ORR at the lowest onset potential. Addition-ally, the ring-current of the 4% CeO2/C PPM P material was higher than that of Vulcan XC 72R and PrintexL6, the reference materials for H2O 2production, indicating the highest electrocatalytic activity for the 4%CeO2/C PPM P material. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A sample preparation method based on ultrasound assisted-extraction (UAE) of Ca, Mg and P from swine feed has been described. The experiment was performed to cover the variables influencing the sonication process and, the method validation using standard reference material. Final solutions obtained upon sonication were analyzed by flame atomic absorption spectrometry (for Ca and Mg) and by UV-vis spectrophotometry (for P). The best conditions for metal extraction were as follows: sample mass: 100 mg in 20 mL 0.10 mol/L HCl, a particle size: <60 μm, sonication time: 5 cycles of 10 s and ultrasound power: 102 W. The UAE method was applied in digestibility assays in different piglet feeds and their results showed that it is highly comparable (P > 0.05) to the other methods used for such purposes, as block digestion, and offered a Ca, Mg and P method of quantification limit of 10.6, 12.4 and 14 mg/kg, respectively. The major advantages of the UAE method compared to other methods are the high treatment rate, low reagent usage in the extracts and, it does not generate toxic residues that might negatively affect human health and the environment, accompanied by good precision and accuracy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.