7 resultados para distributed coupled resonator bandpass filter principles
em Reposit
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The task of controlling urban traffic requires flexibility, adaptability and handling uncertain information spread through the intersection network. The use of fuzzy sets concepts convey these characteristics to improve system performance. This paper reviews a distributed traffic control system built upon a fuzzy distributed architecture previously developed by the authors. The emphasis of the paper is on the application of the system to control part of Campinas downtown area. Simulation experiments considering several traffic scenarios were performed to verify the capabilities of the system in controlling a set of coupled intersections. The performance of the proposed system is compared with conventional traffic control strategies under the same scenarios. The results obtained show that the distributed traffic control system outperforms conventional systems as far as average queues, average delay and maximum delay measures are concerned.
Resumo:
This paper presents an improved design methodology for determining the parameters used in the classical Series-Parallel Loaded Resonant (SPLR) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some characteristics of the resonant filter during the dimming process, such as: range of switching frequency, phase shift and rms value of the current drained by the resonant filter + fluorescent lamp set.
Resumo:
This paper presents an approach for structural health monitoring (SHM) by using adaptive filters. The experimental signals from different structural conditions provided by piezoelectric actuators/sensors bonded in the test structure are modeled by a discrete-time recursive least square (RLS) filter. The biggest advantage to use a RLS filter is the clear possibility to perform an online SHM procedure since that the identification is also valid for non-stationary linear systems. An online damage-sensitive index feature is computed based on autoregressive (AR) portion of coefficients normalized by the square root of the sum of the square of them. The proposed method is then utilized in a laboratory test involving an aeronautical panel coupled with piezoelectric sensors/actuators (PZTs) in different positions. A hypothesis test employing the t-test is used to obtain the damage decision. The proposed algorithm was able to identify and localize the damages simulated in the structure. The results have shown the applicability and drawbacks the method and the paper concludes with suggestions to improve it. ©2010 Society for Experimental Mechanics Inc.
Resumo:
This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Voltages and currents in the transmission line are described by differential equations that are difficult to solve due soil and skin effect that has to be considered for accurate results, but it increases their complexity. Therefore there are some models to study the voltages and currents along in transmission line. The distributed parameters model that transforms the equations in time domain to the frequency domain and once the solutions are obtained, they are converted to time domain using the Inverse Laplace Transform using numerical methods. Another model is named lumped parameters model and it considers the transmission line represented by a pi-circuit cascade and the currents and voltages are described by state equations. In the simulations using the lumped parameters model, it can be observed the presence of spurious oscillations that are independent of the quantity of pi-circuits used and do not represent the real value of the transient. In this work will be projected a passive low-pass filter directly inserted in the lumped parameters model to reduce the spurious oscillations in the simulations, making this model more accurate and reliable for studying the electromagnetic transients in power systems.