12 resultados para Wave-front coding
em Reposit
Resumo:
We present a solitary solution of the three-wave nonlinear partial differential equation (PDE) model - governing resonant space-time stimulated Brillouin or Raman backscattering - in the presence of a cw pump and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experiments. As a result of the instability any initial bounded Stokes signal is amplified and evolves to a subluminous backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains the asymptotic steady regime. © 1997 The American Physical Society.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Measurement of the phase difference between the 0th and the 1st transmitted diffraction orders of a symmetrical surface-relief grating recorded on a photoresist film is carried out by replacement of the grating in the same setup with which it was recorded. The measurement does not depend on lateral shifts of the replaced grating relative to the interference pattern, on environmental phase perturbations or on the wave-front quality of the interfering beams. The experimental data agree rather well with theoretical results calculated for sinusoidal profiled gratings. (C) 2003 Optical Society of America.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.
Resumo:
In this paper we present a new approach for thermal lens analysis using a two-wavelength DSPI (Digital Speckle Pattern Interferometry) setup for wavefront sensing. The employed geometry enables the sensor to detect wavefronts with small phase differences and inherent aberrations found in induced lenses. The wavefronts was reconstructed by four-stepping fringe evaluation and branch-cut unwrapping from fringes formed onto a diffusive glass. Real-time single-exposure contour interferograms could be obtained in order to get discernible and low-spacial frequency contour fringes and obtain low-noise measurements. In our experiments we studied the thermal lens effect in a 4% Er-doped CaO-Al2O3 glass sample. The diode lasers were tuned to have a contour interval of around 120 μm. The incident pump power was longitudinally and collinearly oriented with the probe beams. Each interferogram described a spherical-like wavefront. Using the ABCD matrix formalism we obtained the induced lens dioptric power from the thermal effect for different values of absorbed pump power. © 2012 Copyright SPIE.
Resumo:
This work proposes a method for dioptric power mapping of progressive lenses through dual wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The optical setup employs two red diode lasers which are conveniently aligned and tuned in order to generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate positioned behind the test lens appears covered of contour interference fringes describing the deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike series. From this series, expressions for the dioptric power and astigmatic power were derived as a function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were measured. The experimental results presented a good agreement with those obtained through a commercial lensometer, showing the potentialities of the method. © 2013 Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The pion electromagnetic form factor is calculated with a light-front quark model. The plus and minus components of the electromagnetic current are used to calculate the electromagnetic form factor in the the Breit frame with two models for the q (q) over bar vertex. The light-front constituent quark model describes very well the hadronic wave functions for pseudo-scalar and vector particles. Symmetry problems arising in the light-front approcah are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.
Resumo:
The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike regions within a light-front model allows one to address the issue of nonvalence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)(2), while in timelike region the model produces reasonable results up to 10 (GeV/c)(2).
Resumo:
The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x(+) = 0 to x(+) > 0. It corresponds to the definition of the time ordering operation in the light front time x(+). We calculate the light-front Green's function for 2 interacting bosons propagating forward in x(+). We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pion electromagnetic form factor is calculated in the space- and time-like regions from -10 (GeV/c)2 up to 10 (GeV/c)2, within a front-form model. The dressed photon vertex where a photon decays in a quark-antiquark pair is depicted generalizing the vector meson dominance ansatz, by means of the vector meson vertex functions. An important feature of our model is the description of the on-mass-shell vertex functions in the valence sector, for the pion and the vector mesons, through the front-form wave functions obtained within a realistic quark model. The theoretical results show an excellent agreement with the data in the space-like region, while in the time-like region the description is quite encouraging. © 2003 Elsevier B.V. All rights reserved.