61 resultados para Visual data mining
em Reposit
Resumo:
The increase in the number of spatial data collected has motivated the development of geovisualisation techniques, aiming to provide an important resource to support the extraction of knowledge and decision making. One of these techniques are 3D graphs, which provides a dynamic and flexible increase of the results analysis obtained by the spatial data mining algorithms, principally when there are incidences of georeferenced objects in a same local. This work presented as an original contribution the potentialisation of visual resources in a computational environment of spatial data mining and, afterwards, the efficiency of these techniques is demonstrated with the use of a real database. The application has shown to be very interesting in interpreting obtained results, such as patterns that occurred in a same locality and to provide support for activities which could be done as from the visualisation of results. © 2013 Springer-Verlag.
Resumo:
Variations in the phenotypic expression of heterozygous beta thalassemia reflect the formation of different populations. To better understand the profile of heterozygous beta-thalassemia of the Brazilian population, we aimed at establishing parameters to direct the diagnosis of carriers and calculate the frequency from information stored in an electronic database. Using a Data Mining tool, we evaluated information on 10,960 blood samples deposited in a relational database. Over the years, improved diagnostic technology has facilitated the elucidation of suspected beta thalassemia heterozygote cases with an average frequency of 3.5% of referred cases. We also found that the Brazilian beta thalassemia trait has classic increases of Hb A2 and Hb F (60%), mainly caused by mutations in beta zero thalassemia, especially in the southeast of the country.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article introduces the software program called EthoSeq, which is designed to extract probabilistic behavioral sequences (tree-generated sequences, or TGSs) from observational data and to prepare a TGS-species matrix for phylogenetic analysis. The program uses Graph Theory algorithms to automatically detect behavioral patterns within the observational sessions. It includes filtering tools to adjust the search procedure to user-specified statistical needs. Preliminary analyses of data sets, such as grooming sequences in birds and foraging tactics in spiders, uncover a large number of TGSs which together yield single phylogenetic trees. An example of the use of the program is our analysis of felid grooming sequences, in which we have obtained 1,386 felid grooming TGSs for seven species, resulting in a single phylogeny. These results show that behavior is definitely useful in phylogenetic analysis. EthoSeq simplifies and automates such analyses, uncovers much of the hidden patterns of long behavioral sequences, and prepares this data for further analysis with standard phylogenetic programs. We hope it will encourage many empirical studies on the evolution of behavior.
Resumo:
Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.
Resumo:
Background: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Spatial Data Mining to Support Environmental Management and Decision Making - A Case Study in Brazil
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.
Resumo:
The analysis of large amounts of data is better performed by humans when represented in a graphical format. Therefore, a new research area called the Visual Data Mining is being developed endeavoring to use the number crunching power of computers to prepare data for visualization, allied to the ability of humans to interpret data presented graphically.This work presents the results of applying a visual data mining tool, called FastMapDB to detect the behavioral pattern exhibited by a dataset of clinical information about hemoglobinopathies known as thalassemia. FastMapDB is a visual data mining tool that get tabular data stored in a relational database such as dates, numbers and texts, and by considering them as points in a multidimensional space, maps them to a three-dimensional space. The intuitive three-dimensional representation of objects enables a data analyst to see the behavior of the characteristics from abnormal forms of hemoglobin, highlighting the differences when compared to data from a group without alteration.
Resumo:
In this paper we focus on providing coordinated visual strategies to assist users in performing tasks driven by the presence of temporal and spatial attributes. We introduce temporal visualization techniques targeted at such tasks, and illustrate their use with an application involving a climate classification process. The climate classification requires extensive Processing of a database containing daily rain precipitation values collected along over fifty years at several spatial locations in the São Paulo state, Brazil. We identify user exploration tasks typically conducted as part of the data preparation required in this process, and then describe how such tasks may be assisted by the multiple visual techniques provided. Issues related to the use of the multiple techniques by an end-user are also discussed.
Resumo:
An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.
Resumo:
The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.