10 resultados para Polymorphism for ancestry-admixture mapping
em Reposit
Resumo:
Background: Neuromyelitis optica (NMO) is considered relatively more common in non-Whites, whereas multiple sclerosis (MS) presents a high prevalence rate, particularly in Whites from Western countries populations. However, no study has used ancestry informative markers (AIMs) to estimate the genetic ancestry contribution to NMO patients. Methods: Twelve AIMs were selected based on the large allele frequency differences among European, African, and Amerindian populations, in order to investigate the genetic contribution of each ancestral group in 236 patients with MS and NMO, diagnosed using the McDonald and Wingerchuck criteria, respectively. All 128 MS patients were recruited at the Faculty of Medicine of Ribeirão Preto (MS-RP), Southeastern Brazil, as well as 108 healthy bone marrow donors considered as healthy controls. A total of 108 NMO patients were recruited from five Neurology centers from different Brazilian regions, including Ribeirão Preto (NMO-RP). Principal Findings: European ancestry contribution was higher in MS-RP than in NMO-RP (78.5% vs. 68.7%) patients. In contrast, African ancestry estimates were higher in NMO-RP than in MS-RP (20.5% vs. 12.5%) patients. Moreover, principal component analyses showed that groups of NMO patients from different Brazilian regions were clustered close to the European ancestral population. Conclusions: Our findings demonstrate that European genetic contribution predominates in NMO and MS patients from Brazil. © 2013 Brum et al.
Resumo:
Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. © 2013 Bueno et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The correspondence between morphometric and isozymic geographic variation patterns of Africanized honey bees in Brazil was analyzed. Morphometric data consisted of mean vectors of 19 wing traits measured in 42 local populations distributed throughout the country. Isozymic data refer to allelic frequencies of malate dehydrogenase (MDH), and were obtained from Lobo and Krieger. The two data sets were analyzed through canonical trend surface, principal components and spatial autocorrelation analyses, and showed north-south dines, demonstrating that Africanized honey bees in southern and southeastern Brazil are more similar to European honey bees than those found in northern and northeastern regions. Also, the morphometric variation is within the limits established by the racial admixture model, considering the expected values of Africanized honey bee fore wing length (WL) in southern and northeastern regions of Brazil, estimated by combining average values of WL in the three main subspecies involved in the Africanization process (Apis mellifera scutellata, A. m. ligustica and A. m. mellifera) with racial admixture coefficients.
Resumo:
Mozzarella cheese is traditionally prepared from bubaline (Bubalus bubalis) milk, but product adulteration occurs mainly by addition of or full substitution by bovine milk. The aim of this study was to show the usefulnes of molecular markers to identify the admixture of bovine milk to bubaline milk during the manufacturing process of mozzarella cheese. Samples of mozzarella cheese were produced by adding seven different concentrations of bovine milk: 0%, 1%, 2%, 5%, 8%, 12% and 100%. DNA extracted from somatic cells found in cheese were submitted to PCR-RFLP analysis of casein genes: α-s1-CN - CSN1S1 that encompasses 954 bp from exon VII to intron IX (AluI and HinfI), β-CN - CSN2 including 495 bp of exon VII (Hae III and HinfI), and κ-CN - CSN3, encompassing 373 bp of exon IV (AluI and HindIII). Our results indicate that Hae III-RFLP of CSN2exon VII can be used as a molecular marker to detect the presence of bovine milk in mozzarella cheese. Copyright © 2008, Sociedade Brasileira de Genética.
Resumo:
SNaPshot minisequencing reaction is in increasing use because of its fast detection of many polymorphisms in a single assay. In this work we described a highly sensitive single nucleotide polymorphisms (SNPs) typing method with detection of 42 mitochondrial DNA (mtDNA) SNPs in a single PCR and SNaPshot multiplex reaction in order to allow haplogroup classification in Latin American admixture population. We validated the panel typing 160 Brazilian individuals. DNA was extracted from blood spotted on filter paper using Chelex protocol. Forty SNPs were selected targeting haplogroup-specific mutations in Europeans, Africans and Asians (only precursors of Native Americans haplogroups A2, B2, C1, and D1) and two non-coding SNPs were chosen to increase the power of discrimination between individuals (SNPs positions 16,519 and 16,362). It was done using a modified version of a previously published multiplex SNaPshot minisequencing reaction established to resolve European haplogroups, adding SNPs targeting Africans (L0, L1, L2, L3, and L*) and Asians (A, B, C, and D) haplogroups based on SNPs described at PhyloTree.org build 2. PCR primers were designed using PerlPrimer software and checked with the Autodimer program. Thirty-three primer-pairs were used to amplify 42 SNPs. Using this panel, we were able to successfully classify 160 individuals into their correct haplogroups. Complete SNP profiles were obtained from 10. pg of total DNA. We conclude that it is possible to build and genotype more than 40 mtDNA SNPs in a single multiplex PCR and SNaPshot reaction, with sensitivity and reliability, resolving haplogroup classification in admixture populations. © 2011.
Resumo:
A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.
Resumo:
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25. years, and lack of auto-antibodies. It accounts for 2-5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil. © 2012 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)