9 resultados para Plane Problem
em Reposit
Resumo:
By a sequence of rollings without slipping or twisting along segments of a straight line of the plane, a spherical ball of unit radius has to be transferred from an initial state to an arbitrary final state taking into account the orientation of the ball. We provide a new proof that with at most 3 moves, we can go from a given initial state to an arbitrary final state. The first proof of this result is due to Hammersley ( 1983). His proof is more algebraic than ours which is more geometric. We also showed that generically no one of the three moves, in any elimination of the spin discrepancy, may have length equal to an integral multiple of 2 pi.
Resumo:
Topological optimization problems based on stress criteria are solved using two techniques in this paper. The first technique is the conventional Evolutionary Structural Optimization (ESO), which is known as hard kill, because the material is discretely removed; that is, the elements under low stress that are being inefficiently utilized have their constitutive matrix has suddenly reduced. The second technique, proposed in a previous paper, is a variant of the ESO procedure and is called Smooth ESO (SESO), which is based on the philosophy that if an element is not really necessary for the structure, its contribution to the structural stiffness will gradually diminish until it no longer influences the structure; its removal is thus performed smoothly. This procedure is known as "soft-kill"; that is, not all of the elements removed from the structure using the ESO criterion are discarded. Thus, the elements returned to the structure must provide a good conditioning system that will be resolved in the next iteration, and they are considered important to the optimization process. To evaluate elasticity problems numerically, finite element analysis is applied, but instead of using conventional quadrilateral finite elements, a plane-stress triangular finite element was implemented with high-order modes for solving complex geometric problems. A number of typical examples demonstrate that the proposed approach is effective for solving problems of bi-dimensional elasticity. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a boundary element formulation to analyse plates reinforced by rectangular beams, with columns defined in the domain is proposed. The model is based on Kirchhoff hypothesis and the beams are not required to be displayed over the plate surface, therefore eccentricity effects are taken into account. The presented boundary element method formulation is derived by applying the reciprocity theorem to zoned plates, where beams are treated as thin sub-regions with larger rigidities. The integral representations derived for this complex structural element consider the bending and stretching effects of both structural elements working together. The standard equilibrium and compatibility conditions along interface are naturally imposed, being the bending tractions eliminated along interfaces. The in-plane tractions and the bending and in-plane displacements are approximated along the beam width, reducing the number of degrees of freedom. The columns are introduced into the formulation by considering domain points where tractions can be prescribed. Some examples are then shown to illustrate the accuracy of the formulation, comparing the obtained results with other numerical solutions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.
Resumo:
This paper investigates properties of integer programming models for a class of production planning problems. The models are developed within a decision support system to advise a sales team of the products on which to focus their efforts in gaining new orders in the short term. The products generally require processing on several manufacturing cells and involve precedence relationships. The cells are already (partially) committed with products for stock and to satisfy existing orders and therefore only the residual capacities of each cell in each time period of the planning horizon are considered. The determination of production recommendations to the sales team that make use of residual capacities is a nontrivial optimization problem. Solving such models is computationally demanding and techniques for speeding up solution times are highly desirable. An integer programming model is developed and various preprocessing techniques are investigated and evaluated. In addition, a number of cutting plane approaches have been applied. The performance of these approaches which are both general and application specific is examined.
Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
The purpose of this study is to develop a dynamic vibration absorber using viscoelastic material with nonlinear essential stiffness and time-dependent damping properties for a non-ideal vibrating system with Sommerfeld effect, resonance capture, and jump phenomenon. The absorber is a mass-bar subsystem that consists of a viscoelastic bar with memory attached to mass, in which the internal dissipative forces depend on current, deformations, and its operational frequency varies with limited temperature. The non-ideal vibrating system consists of a linear (nonlinear) oscillator (plane frame structure) under excitation, via spring connector, of a DC-motor with limited power supply. A viscoelastic dynamic absorber modeled with elastic stiffness essentially nonlinearities was developed to further reduce the Sommerfeld effect and the response of the structure. The numerical results show the performance of the absorber on the non-ideal system response through the resonance curves, time histories, and Poincarésections. Furthermore, the structure responses using the viscoelastic damper with and without memory were studied. © IMechE 2012.